Ontology highlight
ABSTRACT: Aims
Mitochondrial thioredoxin reductase (Txnrd2) is a central player in the control of mitochondrial hydrogen peroxide (H2O2) abundance by serving as a direct electron donor to the thioredoxin-peroxiredoxin axis. In this study, we investigated the impact of targeted disruption of Txnrd2 on tumor growth.Results
Tumor cells with a Txnrd2 deficiency failed to activate hypoxia-inducible factor-1? (Hif-1?) signaling; it rather caused PHD2 accumulation, Hif-1? degradation and decreased vascular endothelial growth factor (VEGF) levels, ultimately leading to reduced tumor growth and tumor vascularization. Increased c-Jun NH2-terminal Kinase (JNK) activation proved to be the molecular link between the loss of Txnrd2, an altered mitochondrial redox balance with compensatory upregulation of glutaredoxin-2, and elevated PHD2 expression.Innovation
Our data provide compelling evidence for a yet-unrecognized mitochondrial Txnrd-driven, regulatory mechanism that ultimately prevents cellular Hif-1? accumulation. In addition, simultaneous targeting of both the mitochondrial thioredoxin and glutathione systems was used as an efficient therapeutic approach in hindering tumor growth.Conclusion
This work demonstrates an unexpected regulatory link between mitochondrial Txnrd and the JNK-PHD2-Hif-1? axis, which highlights how the loss of Txnrd2 and the resulting altered mitochondrial redox balance impairs tumor growth as well as tumor-related angiogenesis. Furthermore, it opens a new avenue for a therapeutic approach to hinder tumor growth by the simultaneous targeting of both the mitochondrial thioredoxin and glutathione systems.
SUBMITTER: Hellfritsch J
PROVIDER: S-EPMC4376289 | biostudies-literature | 2015 Apr
REPOSITORIES: biostudies-literature
Hellfritsch Juliane J Kirsch Julian J Schneider Manuela M Fluege Tamara T Wortmann Markus M Frijhoff Jeroen J Dagnell Markus M Fey Theres T Esposito Irene I Kölle Pirkko P Pogoda Kristin K Angeli José Pedro Friedmann JP Ingold Irina I Kuhlencordt Peter P Östman Arne A Pohl Ulrich U Conrad Marcus M Beck Heike H
Antioxidants & redox signaling 20150401 11
<h4>Aims</h4>Mitochondrial thioredoxin reductase (Txnrd2) is a central player in the control of mitochondrial hydrogen peroxide (H2O2) abundance by serving as a direct electron donor to the thioredoxin-peroxiredoxin axis. In this study, we investigated the impact of targeted disruption of Txnrd2 on tumor growth.<h4>Results</h4>Tumor cells with a Txnrd2 deficiency failed to activate hypoxia-inducible factor-1α (Hif-1α) signaling; it rather caused PHD2 accumulation, Hif-1α degradation and decrease ...[more]