Unknown

Dataset Information

0

The construction of common and specific significance subnetworks of Alzheimer's disease from multiple brain regions.


ABSTRACT: Alzheimer's disease (AD) is a progressively and fatally neurodegenerative disorder and leads to irreversibly cognitive and memorial damage in different brain regions. The identification and analysis of the dysregulated pathways and subnetworks among affected brain regions will provide deep insights for the pathogenetic mechanism of AD. In this paper, commonly and specifically significant subnetworks were identified from six AD brain regions. Protein-protein interaction (PPI) data were integrated to add molecular biological information to construct the functional modules of six AD brain regions by Heinz algorithm. Then, the simulated annealing algorithm based on edge weight is applied to predicting and optimizing the maximal scoring networks for common and specific genes, respectively, which can remove the weak interactions and add the prediction of strong interactions to increase the accuracy of the networks. The identified common subnetworks showed that inflammation of the brain nerves is one of the critical factors of AD and calcium imbalance may be a link among several causative factors in AD pathogenesis. In addition, the extracted specific subnetworks for each brain region revealed many biologically functional mechanisms to understand AD pathogenesis.

SUBMITTER: Kong W 

PROVIDER: S-EPMC4383160 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications

The construction of common and specific significance subnetworks of Alzheimer's disease from multiple brain regions.

Kong Wei W   Mou Xiaoyang X   Zhang Na N   Zeng Weiming W   Li Shasha S   Yang Yang Y  

BioMed research international 20150319


Alzheimer's disease (AD) is a progressively and fatally neurodegenerative disorder and leads to irreversibly cognitive and memorial damage in different brain regions. The identification and analysis of the dysregulated pathways and subnetworks among affected brain regions will provide deep insights for the pathogenetic mechanism of AD. In this paper, commonly and specifically significant subnetworks were identified from six AD brain regions. Protein-protein interaction (PPI) data were integrated  ...[more]

Similar Datasets

| S-EPMC4184909 | biostudies-literature
| S-EPMC4022280 | biostudies-literature
| S-EPMC2746014 | biostudies-literature
| S-EPMC4606562 | biostudies-literature
| S-EPMC7390259 | biostudies-literature
| S-EPMC8758493 | biostudies-literature
| S-EPMC7933037 | biostudies-literature
| S-EPMC3515772 | biostudies-literature
| S-EPMC8175859 | biostudies-literature
2010-03-23 | E-GEOD-20295 | biostudies-arrayexpress