Unknown

Dataset Information

0

Convergence and extrusion are required for normal fusion of the mammalian secondary palate.


ABSTRACT: The fusion of two distinct prominences into one continuous structure is common during development and typically requires integration of two epithelia and subsequent removal of that intervening epithelium. Using confocal live imaging, we directly observed the cellular processes underlying tissue fusion, using the secondary palatal shelves as a model. We find that convergence of a multi-layered epithelium into a single-layer epithelium is an essential early step, driven by cell intercalation, and is concurrent to orthogonal cell displacement and epithelial cell extrusion. Functional studies in mice indicate that this process requires an actomyosin contractility pathway involving Rho kinase (ROCK) and myosin light chain kinase (MLCK), culminating in the activation of non-muscle myosin IIA (NMIIA). Together, these data indicate that actomyosin contractility drives cell intercalation and cell extrusion during palate fusion and suggest a general mechanism for tissue fusion in development.

SUBMITTER: Kim S 

PROVIDER: S-EPMC4388528 | biostudies-literature | 2015 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Convergence and extrusion are required for normal fusion of the mammalian secondary palate.

Kim Seungil S   Lewis Ace E AE   Singh Vivek V   Ma Xuefei X   Adelstein Robert R   Bush Jeffrey O JO  

PLoS biology 20150407 4


The fusion of two distinct prominences into one continuous structure is common during development and typically requires integration of two epithelia and subsequent removal of that intervening epithelium. Using confocal live imaging, we directly observed the cellular processes underlying tissue fusion, using the secondary palatal shelves as a model. We find that convergence of a multi-layered epithelium into a single-layer epithelium is an essential early step, driven by cell intercalation, and  ...[more]

Similar Datasets

| S-EPMC5613774 | biostudies-literature
| S-EPMC6196717 | biostudies-literature
| S-EPMC10602007 | biostudies-literature
| S-EPMC6602358 | biostudies-literature
| S-EPMC7093486 | biostudies-literature
| S-EPMC5065162 | biostudies-literature
2019-06-11 | GSE132462 | GEO
| S-EPMC4021823 | biostudies-other
| S-EPMC10110545 | biostudies-literature
| S-EPMC5337145 | biostudies-literature