Project description:There have been considerable advances in uncovering the complex genetic mechanisms that underlie nervous system disease pathogenesis, particularly with the advent of exome and whole genome sequencing techniques. The emerging field of epigenetics is also providing further insights into these mechanisms. Here, we discuss our understanding of the interplay that exists between genetic and epigenetic mechanisms in these disorders, highlighting the nascent field of epigenetic epidemiology-which focuses on analyzing relationships between the epigenome and environmental exposures, development and aging, other health-related phenotypes, and disease states-and next-generation research tools (i.e., those leveraging synthetic and chemical biology and optogenetics) for examining precisely how epigenetic modifications at specific genomic sites affect disease processes.
Project description:ObjectiveTo review the latest progress on the pathogenic mechanism and management of rheumatoid arthritis (RA)-associated coronary artery disease (CAD), and propose advice on future management optimization as well as prospects for research and development of new therapeutic regimen.Data sourcesThis study was based on data obtained from PubMed up to May 2019 using various search terms and their combinations, including coronary artery disease, myocardial ischemia, cardiovascular diseases, RA, rheumatic diseases, treatment, therapy, strategies, immunotherapy, inflammation, and anti-inflammation.Study selectionAll retrieved literature was scrutinized, most relevant articles about the pathogenic mechanism and clinical management, especially anti-inflammatory therapy of RA-associated CAD were reviewed.ResultsRA is an immune-mediated chronic inflammatory disease which has a great social disease burden. In addition to typical arthritic manifestations, RA also affects extra-articular tissues and organs, within which the involvement of the cardiovascular system, especially incorporating CAD, is the leading cause of death for patients with RA. Recently, numerous basic and clinical studies have been carried out on the mechanism of CAD development and progression under the inflammatory cascade of RA. The effect of traditional RA drugs on CAD risk management has been gradually clarified, and more emerging biologic agents are being explored and studied, which have also achieved satisfactory outcomes. Furthermore, with the success of the CANTOS clinical trial, novel anti-inflammatory therapy for the prevention of cardiovascular disease is believed to have a broad prospect.ConclusionsRA is an independent risk factor for CAD, which mainly results from the underlying inflammatory cascade; therefore, anti-inflammatory therapy, especially the emerging novel biologic drugs, is important for CAD management in patients with RA and may also be a promising approach among the general population.
Project description:Neurodegenerative diseases (ND), as a group of central nervous system (CNS) disorders, are among the most prominent medical problems of the 21st century. They are often associated with considerable disability, motor dysfunction and dementia and are more common in the aged population. ND imposes a psychologic, economic and social burden on the patients and their families. Currently, there is no effective treatment for ND. Since many ND result from the gain of function of a mutant allele, small interference RNA (siRNA) can be a potential therapeutic agent for ND management. Based on the RNA interference (RNAi) approach, siRNA is a powerful tool for modulating gene expression through gene silencing. However, there are some obstacles in the clinical application of siRNA, including unfavorable immune response, off-target effects, instability of naked siRNA, nuclease susceptibility and a need to develop a suitable delivery system. Since there are some issues related to siRNA delivery routes, in this review, we focus on the application of siRNA in the management of ND treatment from 2000 to 2020.
Project description:The more than 1.5 billion people who live in South Asia are correctly viewed not as a single large population but as many small endogamous groups. We assembled genome-wide data from over 2,800 individuals from over 260 distinct South Asian groups. We identified 81 unique groups, 14 of which had estimated census sizes of more than 1 million, that descend from founder events more extreme than those in Ashkenazi Jews and Finns, both of which have high rates of recessive disease due to founder events. We identified multiple examples of recessive diseases in South Asia that are the result of such founder events. This study highlights an underappreciated opportunity for decreasing disease burden among South Asians through discovery of and testing for recessive disease-associated genes.
Project description:This state-of-the art manuscript highlights our current understanding of maternal immunization-the practice of vaccinating pregnant women to confer protection on them as well as on their young infants, and thereby reduce vaccine-preventable morbidity and mortality. Advances in our understanding of the immunologic processes that undergird a normal pregnancy, studies from vaccines currently available and recommended for pregnant women, and vaccines for administration in special situations are beginning to build the case for safe scale-up of maternal immunization. In addition to well-known diseases, new diseases are emerging which pose threats. Several new vaccines are currently under development and increasingly include pregnant women. In this manuscript, targeted at clinicians, vaccinologists, scientists, public health practitioners, and policymakers, we also outline key considerations around maternal immunization introduction and delivery, discuss noninfectious horizons for maternal immunization, and provide a framework for the clinician faced with immunizing a pregnant woman.
Project description:Immunotherapy is emerging as the newest pillar of cancer treatment, with the potential to assume a place alongside surgical debulking, radiotherapy, and chemotherapy. Early experiences with antitumor vaccines demonstrated the feasibility and potential efficacy of this approach, and newer agents, such as immune checkpoint blocking antibodies and modern vaccine platforms, have ushered in a new era. These efforts are headlined by work in melanoma, prostate cancer, and renal cell carcinoma; however, substantial progress has been achieved in a variety of other cancers, including high-grade gliomas. A recurrent theme of this work is that immunotherapy is not a one-size-fits-all solution. Rather, dynamic, tumor-specific interactions within the tumor microenvironment continually shape the immunologic balance between tumor elimination and escape. High-grade gliomas are a particularly fascinating example. These aggressive, universally fatal tumors are highly resistant to radiotherapy and chemotherapy and inevitably recur after surgical resection. Located in the immune-privileged central nervous system, high-grade gliomas also use an array of defenses that serve as direct impediments to immune attack. Despite these challenges, vaccines have shown activity against high-grade gliomas, and anecdotal, preclinical, and early clinical data bolster the notion that durable remission is possible with immunotherapy. Realizing this potential, however, will require an approach tailored to the unique aspects of glioma biology.
Project description:Eye movement abnormalities are among the earliest clinical manifestations of inherited and acquired neurodegenerative diseases and play an integral role in their diagnosis. Eyelid movement is neuroanatomically linked to eye movement, and thus eyelid dysfunction can also be a distinguishing feature of neurodegenerative disease and complements eye movement abnormalities in helping us to understand their pathophysiology. In this review, we summarize the various eyelid abnormalities that can occur in neurodegenerative, neurogenetic, and neurometabolic diseases. We discuss eyelid disorders, such as ptosis, eyelid retraction, abnormal spontaneous and reflexive blinking, blepharospasm, and eyelid apraxia in the context of the neuroanatomic pathways that are affected. We also review the literature regarding the prevalence of eyelid abnormalities in different neurologic diseases as well as treatment strategies (Table 1).
Project description:Umbilical cord blood (UCB) has been shown to be a suitable source of haematopoietic stem cells (HSCs) for haematopoietic reconstitution. An increase in the number of UCB transplants indicates an expansion of utility in a broad spectrum of disease conditions. Along with the advantages, UCB also has limitations, and hence several investigators are working to further optimize UCB for this use. Beyond haematopoietic transplantation, additional potential applications of UCB include immunotherapy, tissue engineering and regenerative medicine. UCB banking has improved with time largely due to involvement of professional organizations and their published standards. However, accreditation of these organizations remains voluntary, and in India three of ten banks are public with the remaining being private. Only one public and one private bank are American Association of Blood Banks (AABB) accredited in India. Government agencies need to provide regulatory and safety oversight, which is lacking in serveral countries. Public policy regarding UCB is in its infancy throughout most of the world. Ethical issues, including access to UCB banking and use as therapy for diseases other than haematological and metabolic disorders are in the early phase of trials and remain speculative.
Project description:Recent advances have substantially increased the number of genes that are statistically associated with complex genetic disorders of the CNS such as autism and schizophrenia. It is now clear that there will likely be hundreds of distinct loci contributing to these disorders, underscoring a remarkable genetic heterogeneity. It is unclear whether this genetic heterogeneity indicates an equal heterogeneity of cellular mechanisms for these diseases. The commonality of symptoms across patients suggests there could be a functional convergence downstream of these loci upon a limited number of cell types or circuits that mediate the affected behaviors. One possible mechanism for this convergence would be the selective expression of at least a subset of these genes in the cell types that comprise these circuits. Using profiling data from mice and humans, we have developed and validated an approach, cell type-specific expression analysis, for identifying candidate cell populations likely to be disrupted across sets of patients with distinct genetic lesions. Using human genetics data and postmortem gene expression data, our approach can correctly identify the cell types for disorders of known cellular etiology, including narcolepsy and retinopathies. Applying this approach to autism, a disease where the cellular mechanism is unclear, indicates there may be multiple cellular routes to this disorder. Our approach may be useful for identifying common cellular mechanisms arising from distinct genetic lesions.
Project description:Rare monogenic diseases affect millions worldwide; although over 4,500 rare disease genotypes are known, disease-modifying drugs are available for only 5% of them. The sheer number of these conditions combined with their rarity precludes traditional costly drug discovery programs. An economically viable alternative is to repurpose established drugs for rare diseases. Many genetic diseases result from increased or decreased protein activity and identification of clinically approved drugs which moderate this pathogenic dosage holds therapeutic potential. To identify such agents for neurogenetic diseases, we have generated genome-wide transcriptome profiles of mouse primary cerebrocortical cultures grown in the presence of 218 blood brain barrier penetrant clinic-tested drugs. RNAseq and differential expression analyses were used to generate transcriptomic profiles; therapeutically relevant drug-gene interactions related to rare neurogenetic diseases identified in this fashion were further analyzed by qRT-PCR, western blot and immunofluorescence. We have created a transcriptome-wide searchable database for easy access to the gene expression data resulting from the cerebrocortical drug screen (Neuron Screen) and have mined this data to identify a novel link between thyroid hormone and expression of the peripheral neuropathy associated gene Pmp22. Our results demonstrate the utility of cerebrocortical cultures for transcriptomic drug screening, and the database we have created will foster further discovery of novel links between over 200 clinic-tested blood brain barrier penetrant drugs and genes related to diverse neurologic conditions.