Unknown

Dataset Information

0

Automatic detection of diseased tomato plants using thermal and stereo visible light images.


ABSTRACT: Accurate and timely detection of plant diseases can help mitigate the worldwide losses experienced by the horticulture and agriculture industries each year. Thermal imaging provides a fast and non-destructive way of scanning plants for diseased regions and has been used by various researchers to study the effect of disease on the thermal profile of a plant. However, thermal image of a plant affected by disease has been known to be affected by environmental conditions which include leaf angles and depth of the canopy areas accessible to the thermal imaging camera. In this paper, we combine thermal and visible light image data with depth information and develop a machine learning system to remotely detect plants infected with the tomato powdery mildew fungus Oidium neolycopersici. We extract a novel feature set from the image data using local and global statistics and show that by combining these with the depth information, we can considerably improve the accuracy of detection of the diseased plants. In addition, we show that our novel feature set is capable of identifying plants which were not originally inoculated with the fungus at the start of the experiment but which subsequently developed disease through natural transmission.

SUBMITTER: Raza SE 

PROVIDER: S-EPMC4393321 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications

Automatic detection of diseased tomato plants using thermal and stereo visible light images.

Raza Shan-e-Ahmed SE   Prince Gillian G   Clarkson John P JP   Rajpoot Nasir M NM  

PloS one 20150410 4


Accurate and timely detection of plant diseases can help mitigate the worldwide losses experienced by the horticulture and agriculture industries each year. Thermal imaging provides a fast and non-destructive way of scanning plants for diseased regions and has been used by various researchers to study the effect of disease on the thermal profile of a plant. However, thermal image of a plant affected by disease has been known to be affected by environmental conditions which include leaf angles an  ...[more]

Similar Datasets

| S-EPMC4488321 | biostudies-literature
| S-EPMC7663356 | biostudies-literature
| S-EPMC4295107 | biostudies-literature
| S-EPMC8114337 | biostudies-literature
| S-EPMC7700267 | biostudies-literature
| S-EPMC9974110 | biostudies-literature
| S-EPMC7390991 | biostudies-literature
| S-EPMC8389287 | biostudies-literature
| S-EPMC6363712 | biostudies-literature
| S-EPMC8966154 | biostudies-literature