Unknown

Dataset Information

0

Development of porous PLGA/PEI1.8k biodegradable microspheres for the delivery of mesenchymal stem cells (MSCs).


ABSTRACT: Multipotent mesenchymal stem cells (MSCs) promise a therapeutic alternative for many debilitating and incurable diseases. However, one of the major limitations for the therapeutic application of human MSC (hMSC) is the lengthy ex vivo expansion time for preparing a sufficient amount of cells due to the low engraftment rate after transplantation. To solve this conundrum, a porous biodegradable polymeric microsphere was investigated as a potential scaffold for the delivery of MSCs. The modified water/oil/water (W1/O/W2) double emulsion solvent evaporation method was used for the construction of porous microspheres. PEI1.8k was blended with poly(lactic-co-glycolic acid) (PLGA) to enhance electrostatic cellular attachment to the microspheres. The porous PLGA/PEI1.8k (PPP) particles demonstrated an average particle size of 290?m and an average pore size of 14.3?m, providing a micro-carrier for the MSC delivery. PPP particles allowed for better attachment of rMSCs than non-porous PLGA/PEI1.8k (NPP) particles and non-porous (NP) and porous PLGA (PP) microspheres. rMSC successfully grew on the PPP particles for 2weeks in vitro. Next, PPP particles loaded with 3 different amounts of hMSC showed increased in vivo engraftment rates and maintained the stemness characteristics of hMSC compared with hMSCs-alone group in rats 2weeks after intramyocardial administration. These customized PPP particles for MSC delivery are a biodegradable and injectable scaffold that can be used for clinical applications.

SUBMITTER: Lee YS 

PROVIDER: S-EPMC4395535 | biostudies-literature | 2015 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Development of porous PLGA/PEI1.8k biodegradable microspheres for the delivery of mesenchymal stem cells (MSCs).

Lee Young Sook YS   Lim Kwang Suk KS   Oh Jung-Eun JE   Yoon A-Rum AR   Joo Wan Seok WS   Kim Hyun Soo HS   Yun Chae-Ok CO   Kim Sung Wan SW  

Journal of controlled release : official journal of the Controlled Release Society 20150107


Multipotent mesenchymal stem cells (MSCs) promise a therapeutic alternative for many debilitating and incurable diseases. However, one of the major limitations for the therapeutic application of human MSC (hMSC) is the lengthy ex vivo expansion time for preparing a sufficient amount of cells due to the low engraftment rate after transplantation. To solve this conundrum, a porous biodegradable polymeric microsphere was investigated as a potential scaffold for the delivery of MSCs. The modified wa  ...[more]

Similar Datasets

| S-EPMC4106702 | biostudies-literature
| S-EPMC6044788 | biostudies-literature
| S-EPMC4711899 | biostudies-literature
| S-EPMC4758155 | biostudies-literature
| S-EPMC7505274 | biostudies-literature
| S-EPMC8383769 | biostudies-literature
| S-EPMC6566837 | biostudies-literature
| S-EPMC5642922 | biostudies-literature
| S-EPMC6615946 | biostudies-literature
| S-EPMC7212324 | biostudies-literature