Unknown

Dataset Information

0

Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation.


ABSTRACT: PAD4 has been strongly implicated in the pathogenesis of autoimmune, cardiovascular and oncological diseases through clinical genetics and gene disruption in mice. New selective PAD4 inhibitors binding a calcium-deficient form of the PAD4 enzyme have validated the critical enzymatic role of human and mouse PAD4 in both histone citrullination and neutrophil extracellular trap formation for, to our knowledge, the first time. The therapeutic potential of PAD4 inhibitors can now be explored.

SUBMITTER: Lewis HD 

PROVIDER: S-EPMC4397581 | biostudies-literature | 2015 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications


PAD4 has been strongly implicated in the pathogenesis of autoimmune, cardiovascular and oncological diseases through clinical genetics and gene disruption in mice. New selective PAD4 inhibitors binding a calcium-deficient form of the PAD4 enzyme have validated the critical enzymatic role of human and mouse PAD4 in both histone citrullination and neutrophil extracellular trap formation for, to our knowledge, the first time. The therapeutic potential of PAD4 inhibitors can now be explored. ...[more]

Similar Datasets

| S-EPMC3525017 | biostudies-literature
| S-EPMC8360066 | biostudies-literature
| S-EPMC6301070 | biostudies-literature
2023-12-27 | GSE241485 | GEO
2015-10-08 | GSE69680 | GEO
| S-EPMC6938345 | biostudies-literature
| S-EPMC6838784 | biostudies-literature
| S-EPMC6504009 | biostudies-literature
| S-EPMC7644613 | biostudies-literature
| S-EPMC7220352 | biostudies-literature