Project description:Oligomers of N-substituted glycine, or peptoids, are versatile tools to probe biological processes and hold promise as therapeutic agents. An underlying theme in the majority of recent peptoid research is the connection between peptoid function and peptoid structure. For certain applications, well-folded peptoids are essential for activity, while unstructured peptoids appear to suffice, or even are superior, for other applications. Currently, these structure-function connections are largely made after the design, synthesis, and characterization process. However, as guidelines for peptoid folding are elucidated and the known biological activities are expanded, we anticipate these connections will provide a pathway toward the de novo design of functional peptoids. In this perspective, we review several of the peptoid structure-function relationships that have been delineated over the past five years.
Project description:Multidrug resistance (MDR) in Gram-negative pathogens, such as the Enterobacteriaceae and Pseudomonas aeruginosa, poses a significant threat to our ability to effectively treat infections caused by these organisms. A major component in the development of the MDR phenotype in Gram-negative bacteria is overexpression of Resistance-Nodulation-Division (RND)-type efflux pumps, which actively pump antibacterial agents and biocides from the periplasm to the outside of the cell. Consequently, bacterial efflux pumps are an important target for developing novel antibacterial treatments. Potent efflux pump inhibitors (EPIs) could be used as adjunctive therapies that would increase the potency of existing antibiotics and decrease the emergence of MDR bacteria. Several potent inhibitors of RND-type efflux pump have been reported in the literature, and at least three of these EPI series were optimized in a pre-clinical development program. However, none of these compounds have been tested in the clinic. One of the major hurdles to the development of EPIs has been the lack of biochemical, computational, and structural methods that could be used to guide rational drug design. Here, we review recent reports that have advanced our understanding of the mechanism of action of several potent EPIs against RND-type pumps.
Project description:Heat shock protein 90 (Hsp90) is a dynamic protein which serves to ensure proper folding of nascent client proteins, regulate transcriptional responses to environmental stress and guide misfolded and damaged proteins to destruction via ubiquitin proteasome pathway. Recent advances in the field of Hsp90 have been made through development of isoform selective inhibitors, Hsp90 C-terminal inhibitors and disruption of protein-protein interactions. These approaches have led to alleviation of adverse off-target effects caused by pan-inhibition of Hsp90 using N-terminal inhibitors. In this review, we provide an overview of relevant advances on targeting the Hsp90 C-terminal Domain (CTD) and the development of Hsp90 C-terminal inhibitors (CTIs) since 2015.
Project description:Recent years have witnessed critical contributions to our understanding of the determinants and long-term implications of lung function development. In this article, we review studies that have contributed to advances in understanding lung function development and its critical importance for lung health into adult life. In particular, we have focused on early life determinants that include genetic factors, perinatal events, environmental exposures, lifestyle, infancy lower respiratory tract infections, and persistent asthma phenotypes. Longitudinal studies have conclusively demonstrated that lung function deficits that are established by school age may track into adult life and increase the risk of adult lung obstructive diseases, such as chronic obstructive pulmonary disease. Furthermore, these contributions have provided initial evidence in support of a direct influence by early life events on an accelerated decline of lung function and an increased susceptibility to its environmental determinants well into adult life. As such, we argue that future health-care programs based on precision medicine approaches that integrate deep phenotyping with tailored medication and advice to patients should also foster optimal lung function growth to be fully effective.
Project description:Hemophilia is a monogenic mutational disease affecting coagulation factor VIII or factor IX genes. The palliative treatment of choice is based on the use of safe and effective recombinant clotting factors. Advanced therapies will be curative, ensuring stable and durable concentrations of the defective circulating factor. Results have so far been encouraging in terms of levels and times of expression using mainly adeno-associated vectors. However, these therapies are associated with immunogenicity and hepatotoxicity. Optimizing the vector serotypes and the transgene (variants) will boost clotting efficacy, thus increasing the viability of these protocols. It is essential that both physicians and patients be informed about the potential benefits and risks of the new therapies, and a register of gene therapy patients be kept with information of the efficacy and long-term adverse events associated with the treatments administered. In the context of hemophilia, gene therapy may result in (particularly indirect) cost savings and in a more equitable allocation of treatments. In the case of hemophilia A, further research is needed into how to effectively package the large factor VIII gene into the vector; and in the case of hemophilia B, the priority should be to optimize both the vector serotype, reducing its immunogenicity and hepatotoxicity, and the transgene, boosting its clotting efficacy so as to minimize the amount of vector administered and decrease the incidence of adverse events without compromising the efficacy of the protein expressed.
Project description:The use of gene-editing tools, such as zinc finger nucleases, TALEN, and CRISPR/Cas, allows for the modification of physiological, morphological, and other characteristics in a wide range of crops to mitigate the negative effects of stress caused by anthropogenic climate change or biotic stresses. Importantly, these tools have the potential to improve crop resilience and increase yields in response to challenging environmental conditions. This review provides an overview of gene-editing techniques used in plants, focusing on the cultivated tomatoes. Several dozen genes that have been successfully edited with the CRISPR/Cas system were selected for inclusion to illustrate the possibilities of this technology in improving fruit yield and quality, tolerance to pathogens, or responses to drought and soil salinity, among other factors. Examples are also given of how the domestication of wild species can be accelerated using CRISPR/Cas to generate new crops that are better adapted to the new climatic situation or suited to use in indoor agriculture.
Project description:Recent advances in high-throughput molecular testing have made it possible to diagnose most genetic disorders relatively early in gestation with minimal risk to the fetus. These advances should soon allow widespread prenatal screening for the majority of human genetic diseases, opening the door to the possibility of treatment/correction prior to birth. In addition to the obvious psychological and financial benefits of curing a disease in utero, and thereby enabling the birth of a healthy infant, there are multiple biological advantages unique to fetal development, which provide compelling rationale for performing potentially curative treatments, such as stem cell transplantation or gene therapy, prior to birth. Herein, we briefly review the fields of in utero transplantation (IUTx) and in utero gene therapy and discuss the biological hurdles that have thus far restricted success of IUTx to patients with immunodeficiencies. We then highlight several recent experimental breakthroughs in immunology, hematopoietic/marrow ontogeny, and in utero cell delivery, which have collectively provided means of overcoming these barriers, thus setting the stage for clinical application of these highly promising therapies in the near future.
Project description:Conspectus There is need in the molecular simulation community to develop new quantum mechanical (QM) methods that can be routinely applied to the simulation of large molecular systems in complex, heterogeneous condensed phase environments. Although conventional methods, such as the hybrid quantum mechanical/molecular mechanical (QM/MM) method, are adequate for many problems, there remain other applications that demand a fully quantum mechanical approach. QM methods are generally required in applications that involve changes in electronic structure, such as when chemical bond formation or cleavage occurs, when molecules respond to one another through polarization or charge transfer, or when matter interacts with electromagnetic fields. A full QM treatment, rather than QM/MM, is necessary when these features present themselves over a wide spatial range that, in some cases, may span the entire system. Specific examples include the study of catalytic events that involve delocalized changes in chemical bonds, charge transfer, or extensive polarization of the macromolecular environment; drug discovery applications, where the wide range of nonstandard residues and protonation states are challenging to model with purely empirical MM force fields; and the interpretation of spectroscopic observables. Unfortunately, the enormous computational cost of conventional QM methods limit their practical application to small systems. Linear-scaling electronic structure methods (LSQMs) make possible the calculation of large systems but are still too computationally intensive to be applied with the degree of configurational sampling often required to make meaningful comparison with experiment. In this work, we present advances in the development of a quantum mechanical force field (QMFF) suitable for application to biological macromolecules and condensed phase simulations. QMFFs leverage the benefits provided by the LSQM and QM/MM approaches to produce a fully QM method that is able to simultaneously achieve very high accuracy and efficiency. The efficiency of the QMFF is made possible by partitioning the system into fragments and self-consistently solving for the fragment-localized molecular orbitals in the presence of the other fragment's electron densities. Unlike a LSQM, the QMFF introduces empirical parameters that are tuned to obtain very accurate intermolecular forces. The speed and accuracy of our QMFF is demonstrated through a series of examples ranging from small molecule clusters to condensed phase simulation, and applications to drug docking and protein-protein interactions. In these examples, comparisons are made to conventional molecular mechanical models, semiempirical methods, ab initio Hamiltonians, and a hybrid QM/MM method. The comparisons demonstrate the superior accuracy of our QMFF relative to the other models; nonetheless, we stress that the overarching role of QMFFs is not to supplant these established computational methods for problems where their use is appropriate. The role of QMFFs within the toolbox of multiscale modeling methods is to extend the range of applications to include problems that demand a fully quantum mechanical treatment of a large system with extensive configurational sampling.
Project description:Since the discovery of Endothelial Progenitor Cells (EPC) by Asahara and colleagues in 1997, an increasing number of preclinical studies have shown that EPC based therapy is feasible, safe, and efficacious in multiple disease states. Subsequently, this has led to several, mainly early phase, clinical trials demonstrating the feasibility and safety profile of EPC therapy, with the suggestion of efficacy in several conditions including ischemic heart disease, pulmonary arterial hypertension and decompensated liver cirrhosis. Despite the use of the common term "EPC," the characteristics, manufacturing methods and subset of the cell type used in these studies often vary significantly, rendering clinical translation challenging. It has recently been acknowledged that the true EPC is the endothelial colony forming cells (ECFC). The objective of this review was to summarize and critically appraise the registered and published clinical studies using the term "EPC," which encompasses a heterogeneous cell population, as a therapeutic agent. Furthermore, the preclinical data using ECFC from the PubMed and Web of Science databases were searched and analyzed. We noted that despite the promising effect of ECFC on vascular regeneration, no clinical study has stemmed from these preclinical studies. We showed that there is a lack of information registered on www.clinicaltrials.gov for EPC clinical trials, specifically on cell culture methods. We also highlighted the importance of a detailed definition of the cell type used in EPC clinical trials to facilitate comparisons between trials and better understanding of the potential clinical benefit of EPC based therapy. We concluded our review by discussing the potential and limitations of EPC based therapy in clinical settings.
Project description:Overproduction of nitric oxide by neuronal nitric oxide synthase (nNOS) has been highly correlated with numerous neurodegenerative diseases and stroke. Given its role in human diseases, nNOS is an important target for therapy that deserves further attention. During the last decade, a large number of organic scaffolds have been investigated to develop selective nNOS inhibitors, resulting in two principal classes of compounds, 2-aminopyridines and thiophene-2- carboximidamides. The former compounds were investigated in detail by our group, exhibiting great potency and excellent selectivity; however, they suffer from poor bioavailability, which hampers their therapeutic potential. Here we present a review of various strategies adopted by our group to improve the bioavailability of 2-aminopyridine derivatives and describe recent advances in thiophene-2-carboximidamide based nNOS-selective inhibitors, which exhibit promising pharmacological profiles.