Unknown

Dataset Information

0

DNA methylation, its mediators and genome integrity.


ABSTRACT: DNA methylation regulates many cellular processes, including embryonic development, transcription, chromatin structure, X-chromosome inactivation, genomic imprinting and chromosome stability. DNA methyltransferases establish and maintain the presence of 5-methylcytosine (5mC), and ten-eleven translocation cytosine dioxygenases (TETs) oxidise 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), which can be removed by base excision repair (BER) proteins. Multiple forms of DNA methylation are recognised by methyl-CpG binding proteins (MeCPs), which play vital roles in chromatin-based transcriptional regulation, DNA repair and replication. Accordingly, defects in DNA methylation and its mediators may cause silencing of tumour suppressor genes and misregulation of multiple cell cycles, DNA repair and chromosome stability genes, and hence contribute to genome instability in various human diseases, including cancer. Thus, understanding functional genetic mutations and aberrant expression of these DNA methylation mediators is critical to deciphering the crosstalk between concurrent genetic and epigenetic alterations in specific cancer types and to the development of new therapeutic strategies.

SUBMITTER: Meng H 

PROVIDER: S-EPMC4400391 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications

DNA methylation, its mediators and genome integrity.

Meng Huan H   Cao Ying Y   Qin Jinzhong J   Song Xiaoyu X   Zhang Qing Q   Shi Yun Y   Cao Liu L  

International journal of biological sciences 20150408 5


DNA methylation regulates many cellular processes, including embryonic development, transcription, chromatin structure, X-chromosome inactivation, genomic imprinting and chromosome stability. DNA methyltransferases establish and maintain the presence of 5-methylcytosine (5mC), and ten-eleven translocation cytosine dioxygenases (TETs) oxidise 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), which can be removed by base excision repair (BER) proteins. Mu  ...[more]

Similar Datasets

| S-EPMC6135857 | biostudies-other
2021-09-21 | GSE158011 | GEO
| S-EPMC7305168 | biostudies-literature
| S-EPMC4435253 | biostudies-literature
2021-09-21 | GSE159663 | GEO
2021-09-21 | GSE158010 | GEO
| S-EPMC4695261 | biostudies-literature
2021-09-21 | GSE158008 | GEO
2021-09-21 | GSE159664 | GEO
2021-09-21 | GSE158007 | GEO