Project description:BACKGROUND:Tidal (12.4 hr) cycles of behavior and physiology adapt intertidal organisms to temporally complex coastal environments, yet their underlying mechanism is unknown. However, the very existence of an independent "circatidal" clock has been disputed, and it has been argued that tidal rhythms arise as a submultiple of a circadian clock, operating in dual oscillators whose outputs are held in antiphase i.e., ~12.4 hr apart. RESULTS:We demonstrate that the intertidal crustacean Eurydice pulchra (Leach) exhibits robust tidal cycles of swimming in parallel to circadian (24 hr) rhythms in behavioral, physiological and molecular phenotypes. Importantly, ~12.4 hr cycles of swimming are sustained in constant conditions, they can be entrained by suitable stimuli, and they are temperature compensated, thereby meeting the three criteria that define a biological clock. Unexpectedly, tidal rhythms (like circadian rhythms) are sensitive to pharmacological inhibition of Casein kinase 1, suggesting the possibility of shared clock substrates. However, cloning the canonical circadian genes of E. pulchra to provide molecular markers of circadian timing and also reagents to disrupt it by RNAi revealed that environmental and molecular manipulations that confound circadian timing do not affect tidal timing. Thus, competent circadian timing is neither an inevitable nor necessary element of tidal timekeeping. CONCLUSIONS:We demonstrate that tidal rhythms are driven by a dedicated circatidal pacemaker that is distinct from the circadian system of E. pulchra, thereby resolving a long-standing debate regarding the nature of the circatidal mechanism.
Project description:Circadian clocks in terrestrial animals are encoded by molecular feedback loops involving the negative regulators PERIOD, TIMELESS or CRYPTOCHROME2 and positive transcription factors CLOCK and BMAL1/CYCLE. The molecular basis of circatidal (~12.4 hour) or other lunar-mediated cycles (~15 day, ~29 day), widely expressed in coastal organisms, is unknown. Disrupting circadian clockworks does not appear to affect lunar-based rhythms in several organisms that inhabit the shoreline suggesting a molecular independence of the two cycles. Nevertheless, pharmacological inhibition of casein kinase 1 (CK1) that targets PERIOD stability in mammals and flies, affects both circadian and circatidal phenotypes in Eurydice pulchra (Ep), the speckled sea-louse. Here we show that these drug inhibitors of CK1 also affect the phosphorylation of EpCLK and EpBMAL1 and disrupt EpCLK-BMAL1-mediated transcription in Drosophila S2 cells, revealing a potential link between these two positive circadian regulators and circatidal behaviour. We therefore performed dsRNAi knockdown of Epbmal1 as well as the major negative regulator in Eurydice, Epcry2 in animals taken from the wild. Epcry2 and Epbmal1 knockdown disrupted Eurydice's circadian phenotypes of chromatophore dispersion, tim mRNA cycling and the circadian modulation of circatidal swimming, as expected. However, circatidal behaviour was particularly sensitive to Epbmal1 knockdown with consistent effects on the power, amplitude and rhythmicity of the circatidal swimming cycle. Thus, three Eurydice negative circadian regulators, EpCRY2, in addition to EpPER and EpTIM (from a previous study), do not appear to be required for the expression of robust circatidal behaviour, in contrast to the positive regulator EpBMAL1. We suggest a neurogenetic model whereby the positive circadian regulators EpBMAL1-CLK are shared between circadian and circatidal mechanisms in Eurydice but circatidal rhythms require a novel, as yet unknown negative regulator.
Project description:Rates of molecular evolution vary widely among lineages, but the causes of this variation remain poorly understood. It has been suggested that mass-specific metabolic rate may be one of the key factors determining the rate of molecular evolution, and that it can be used to derive "corrected" molecular clocks. However, previous studies have been hampered by a paucity of mass-specific metabolic rate data and have been largely limited to vertebrate taxa. Using mass-specific metabolic rate measurements and DNA sequence data for >300 metazoan species for 12 different genes, we find no evidence that mass-specific metabolic rate drives substitution rates. The mechanistic basis of the metabolic rate hypothesis is discussed in light of these findings.
Project description:Marine coastal habitats are complex cyclic environments as a result of sun and moon interactions. In contrast with the well-known circadian orchestration of the terrestrial animal rhythmicity (approx. 24 h), the mechanism responsible for the circatidal rhythm (approx. 12.4 h) remains largely elusive in marine organisms. We revealed in subtidal field conditions that the oyster Crassostrea gigas exhibits tidal rhythmicity of circadian clock genes and clock-associated genes. A free-running (FR) experiment showed an endogenous circatidal rhythm. In parallel, we showed in the field that oysters' valve behaviour exhibited a strong tidal rhythm combined with a daily rhythm. In the FR experiment, all behavioural rhythms were circatidal, and half of them were also circadian. Our results fuel the debate on endogenous circatidal mechanisms. In contrast with the current hypothesis on the existence of an independent tidal clock, we suggest that a single 'circadian/circatidal' clock in bivalves is sufficient to entrain behavioural patterns at tidal and daily frequencies.
Project description:Marine-terrestrial transition represents an important aspect of organismal evolution that requires numerous morphological and genetic innovations and has been hypothesized to be caused by geological changes. We used talitrid crustaceans with marine-coastal-montane extant species at a global scale to investigate the marine origination and terrestrial adaptation. Using genomic data, we demonstrated that marine ancestors repeatedly colonized montane terrestrial habitats during the Oligocene to Miocene. Biological transitions were well correlated with plate collisions or volcanic island formation, and top-down cladogenesis was observed on the basis of a positive relationship between ancestral habitat elevation and divergence time for montane lineages. We detected convergent variations of convoluted gills and convergent evolution of SMC3 associated with montane transitions. Moreover, using CRISPR-Cas9 mutagenesis, we proposed that SMC3 potentially regulates the development of exites, such as talitrid gills. Our results provide a living model for understanding biological innovations and related genetic regulatory mechanisms associated with marine-terrestrial transitions.
Project description:The mottled skate, Raja pulchra, is an economically valuable fish. However, due to a severe population decline, it is listed as a vulnerable species by the International Union for Conservation of Nature. To analyze its genetic structure and diversity, microsatellite markers were developed using 454 pyrosequencing. A total of 17,033 reads containing dinucleotide microsatellite repeat units (mean, 487 base pairs) were identified from 453,549 reads. Among 32 loci containing more than nine repeat units, 20 primer sets (62%) produced strong PCR products, of which 14 were polymorphic. In an analysis of 60 individuals from two R. pulchra populations, the number of alleles per locus ranged from 1-10, and the mean allelic richness was 4.7. No linkage disequilibrium was found between any pair of loci, indicating that the markers were independent. The Hardy-Weinberg equilibrium test showed significant deviation in two of the 28 single-loci after sequential Bonferroni's correction. Using 11 primer sets, cross-species amplification was demonstrated in nine related species from four families within two classes. Among the 11 loci amplified from three other Rajidae family species; three loci were polymorphic. A monomorphic locus was amplified in all three Rajidae family species and the Dasyatidae family. Two Rajidae polymorphic loci amplified monomorphic target DNAs in four species belonging to the Carcharhiniformes class, and another was polymorphic in two Carcharhiniformes species.
Project description:Nautella sp. R11, a member of the marine Roseobacter clade, causes a bleaching disease in the temperate-marine red macroalga, Delisea pulchra. To begin to elucidate the molecular mechanisms underpinning the ability of Nautella sp. R11 to colonize, invade and induce bleaching of D. pulchra, we sequenced and analyzed its genome. The genome encodes several factors such as adhesion mechanisms, systems for the transport of algal metabolites, enzymes that confer resistance to oxidative stress, cytolysins, and global regulatory mechanisms that may allow for the switch of Nautella sp. R11 to a pathogenic lifestyle. Many virulence effectors common in phytopathogenic bacteria are also found in the R11 genome, such as the plant hormone indole acetic acid, cellulose fibrils, succinoglycan and nodulation protein L. Comparative genomics with non-pathogenic Roseobacter strains and a newly identified pathogen, Phaeobacter sp. LSS9, revealed a patchy distribution of putative virulence factors in all genomes, but also led to the identification of a quorum sensing (QS) dependent transcriptional regulator that was unique to pathogenic Roseobacter strains. This observation supports the model that a combination of virulence factors and QS-dependent regulatory mechanisms enables indigenous members of the host alga's epiphytic microbial community to switch to a pathogenic lifestyle, especially under environmental conditions when innate host defence mechanisms are compromised.
Project description:The effect of monanchomycalin B, monanhocicidin A, and normonanhocidin A isolated from the Northwest Pacific sample of the sponge Monanchora pulchra was investigated on the activity of α-galactosidase from the marine γ-proteobacterium Pseudoalteromonas sp. KMM 701 (α-PsGal), and α-N-acetylgalactosaminidase from the marine bacterium Arenibacter latericius KMM 426T (α-NaGa). All compounds are slow-binding irreversible inhibitors of α-PsGal, but have no effect on α-NaGa. A competitive inhibitor d-galactose protects α-PsGal against the inactivation. The inactivation rate (kinact) and equilibrium inhibition (Ki) constants of monanchomycalin B, monanchocidin A, and normonanchocidin A were 0.166 ± 0.029 min-1 and 7.70 ± 0.62 μM, 0.08 ± 0.003 min-1 and 15.08 ± 1.60 μM, 0.026 ± 0.000 min-1, and 4.15 ± 0.01 μM, respectively. The 2D-diagrams of α-PsGal complexes with the guanidine alkaloids were constructed with "vessel" and "anchor" parts of the compounds. Two alkaloid binding sites on the molecule of α-PsGal are shown. Carboxyl groups of the catalytic residues Asp451 and Asp516 of the α-PsGal active site interact with amino groups of "anchor" parts of the guanidine alkaloid molecules.
Project description:Cellular energy production requires coordinated interactions between genetic components from the nuclear and mitochondrial genomes. This coordination results in coadaptation of interacting elements within populations. Interbreeding between divergent gene pools can disrupt coadapted loci and result in hybrid fitness breakdown. While specific incompatible loci have been detected in multiple eukaryotic taxa, the extent of the nuclear genome that is influenced by mitonuclear coadaptation is not clear in any species. Here, we used F2 hybrids between two divergent populations of the copepod Tigriopus californicus to examine mitonuclear coadaptation across the nuclear genome. Using developmental rate as a measure of fitness, we found that fast-developing copepods had higher ATP synthesis capacity than slow developers, suggesting variation in developmental rates is at least partly associated with mitochondrial dysfunction. Using Pool-seq, we detected strong biases for maternal alleles across 7 (of 12) chromosomes in both reciprocal crosses in high-fitness hybrids, whereas low-fitness hybrids showed shifts toward the paternal population. Comparison with previous results on a different hybrid cross revealed largely different patterns of strong mitonuclear coadaptation associated with developmental rate. Our findings suggest that functional coadaptation between interacting nuclear and mitochondrial components is reflected in strong polygenic effects on this life-history phenotype, and reveal that molecular coadaptation follows independent evolutionary trajectories among isolated populations.
Project description:Guanidine alkaloids from sponges Monanchora spp. represent diverse bioactive compounds, however, the mechanisms underlying bioactivity are very poorly understood. Here, we report results of studies on cytotoxic action, the ability to inhibit EGF-induced neoplastic transformation, and the effects on MAPK/AP-1 signaling of eight rare guanidine alkaloids, recently isolated from the marine sponge Monanchora pulchra, namely: monanchocidin A (1), monanchocidin B (2), monanchomycalin C (3), ptilomycalin A (4), monanchomycalin B (5), normonanchocidin D (6), urupocidin A (7), and pulchranin A (8). All of the compounds induced cell cycle arrest (apart from 8) and programmed death of cancer cells. Ptilomycalin A-like compounds 1-6 activated JNK1/2 and ERK1/2, following AP-1 activation and caused p53-independent programmed cell death. Compound 7 induced p53-independent cell death without activation of AP-1 or caspase-3/7, and the observed JNK1/2 activation did not contribute to the cytotoxic effect of the compound. Alkaloid 8 induced JNK1/2 (but not ERK1/2) activation leading to p53-independent cell death and strong suppression of AP-1 activity. Alkaloids 1-4, 7, and 8 were able to inhibit the EGF-induced neoplastic transformation of JB6 P⁺ Cl41 cells. Our results suggest that investigated guanidine marine alkaloids hold potential to eliminate human cancer cells and prevent cancer cell formation and spreading.