Unknown

Dataset Information

0

Bovine F1Fo ATP synthase monomers bend the lipid bilayer in 2D membrane crystals.


ABSTRACT: We have used a combination of electron cryo-tomography, subtomogram averaging, and electron crystallographic image processing to analyse the structure of intact bovine F(1)F(o) ATP synthase in 2D membrane crystals. ATPase assays and mass spectrometry analysis of the 2D crystals confirmed that the enzyme complex was complete and active. The structure of the matrix-exposed region was determined at 24 Å resolution by subtomogram averaging and repositioned into the tomographic volume to reveal the crystal packing. F(1)F(o) ATP synthase complexes are inclined by 16° relative to the crystal plane, resulting in a zigzag topology of the membrane and indicating that monomeric bovine heart F(1)F(o) ATP synthase by itself is sufficient to deform lipid bilayers. This local membrane curvature is likely to be instrumental in the formation of ATP synthase dimers and dimer rows, and thus for the shaping of mitochondrial cristae.

SUBMITTER: Jiko C 

PROVIDER: S-EPMC4413875 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications


We have used a combination of electron cryo-tomography, subtomogram averaging, and electron crystallographic image processing to analyse the structure of intact bovine F(1)F(o) ATP synthase in 2D membrane crystals. ATPase assays and mass spectrometry analysis of the 2D crystals confirmed that the enzyme complex was complete and active. The structure of the matrix-exposed region was determined at 24 Å resolution by subtomogram averaging and repositioned into the tomographic volume to reveal the c  ...[more]

Similar Datasets

| S-EPMC5665977 | biostudies-literature
| S-EPMC193768 | biostudies-literature
| S-EPMC7568535 | biostudies-literature
| S-EPMC5494197 | biostudies-literature
| S-EPMC7923604 | biostudies-literature
| S-EPMC14681 | biostudies-literature
| S-EPMC3736803 | biostudies-literature
| S-EPMC6250052 | biostudies-literature
| S-EPMC1482892 | biostudies-literature
| S-EPMC4194097 | biostudies-literature