Unknown

Dataset Information

0

Eag Domains Regulate LQT Mutant hERG Channels in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes.


ABSTRACT: Human Ether á go-go Related Gene potassium channels form the rapid component of the delayed-rectifier (IKr) current in the heart. The N-terminal 'eag' domain, which is composed of a Per-Arnt-Sim (PAS) domain and a short PAS-cap region, is a critical regulator of hERG channel function. In previous studies, we showed that isolated eag (i-eag) domains rescued the dysfunction of long QT type-2 associated mutant hERG R56Q channels, by substituting for defective eag domains, when the channels were expressed in Xenopus oocytes or HEK 293 cells.Here, our goal was to determine whether the rescue of hERG R56Q channels by i-eag domains could be translated into the environment of cardiac myocytes. We expressed hERG R56Q channels in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and measured electrical properties of the cells with whole-cell patch-clamp recordings. We found that, like in non-myocyte cells, hERG R56Q had defective, fast closing (deactivation) kinetics when expressed in hiPSC-CMs. We report here that i-eag domains slowed the deactivation kinetics of hERG R56Q channels in hiPSC-CMs. hERG R56Q channels prolonged the AP of hiPSCs, and the AP was shortened by co-expression of i-eag domains and hERG R56Q channels. We measured robust Förster Resonance Energy Transfer (FRET) between i-eag domains tagged with Cyan fluorescent protein (CFP) and hERG R56Q channels tagged with Citrine fluorescent proteins (Citrine), indicating their close proximity at the cell membrane in live iPSC-CMs. Together, functional regulation and FRET spectroscopy measurements indicated that i-eag domains interacted directly with hERG R56Q channels in hiPSC-CMs. These results mean that the regulatory role of i-eag domains is conserved in the cellular environment of human cardiomyocytes, indicating that i-eag domains may be useful as a biological therapeutic.

SUBMITTER: Liu QN 

PROVIDER: S-EPMC4414485 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications

Eag Domains Regulate LQT Mutant hERG Channels in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes.

Liu Qiang-Ni QN   Trudeau Matthew C MC  

PloS one 20150429 4


Human Ether á go-go Related Gene potassium channels form the rapid component of the delayed-rectifier (IKr) current in the heart. The N-terminal 'eag' domain, which is composed of a Per-Arnt-Sim (PAS) domain and a short PAS-cap region, is a critical regulator of hERG channel function. In previous studies, we showed that isolated eag (i-eag) domains rescued the dysfunction of long QT type-2 associated mutant hERG R56Q channels, by substituting for defective eag domains, when the channels were exp  ...[more]

Similar Datasets

| S-EPMC3787778 | biostudies-other
| S-EPMC7515569 | biostudies-literature
| S-EPMC6648204 | biostudies-literature
| S-EPMC7582727 | biostudies-literature
| S-EPMC4793660 | biostudies-literature
| S-EPMC1617037 | biostudies-literature
| S-EPMC2935226 | biostudies-literature
| S-EPMC9354841 | biostudies-literature
| S-EPMC8103639 | biostudies-literature
| S-EPMC5861016 | biostudies-literature