Unknown

Dataset Information

0

5Z-7-Oxozeanol Inhibits the Effects of TGF?1 on Human Gingival Fibroblasts.


ABSTRACT: Transforming growth factor (TGF)? acts on fibroblasts to promote the production and remodeling of extracellular matrix (ECM). In adult humans, excessive action of TGF? is associated with fibrotic disease and fibroproliferative conditions, including gingival hyperplasia. Understanding how the TGF?1 signals in fibroblasts is therefore likely to result in valuable insights into the fundamental mechanisms underlying fibroproliferative disorders. Previously, we used the TAK1 inhibitor (5Z)-7-Oxozeaenol to show that, in dermal fibroblasts, the non-canonical TAK1 pathway mediates the ability of TGF?1 to induce genes promoting tissue remodeling and repair. However, the extent to which TAK1 mediates fibroproliferative responses in fibroblasts in response to TGF?1 remains unclear. Herein, we show that, in gingival fibroblasts, (5Z)-7-Oxozeaenol blocks the ability of TGF?1 to induce expression of the pro-fibrotic mediator CCN2 (connective tissue growth factor, CTGF) and type I collagen protein. Moreover, genome-wide expression profiling revealed that, in gingival fibroblasts, (5Z)-7-Oxozeaenol reduces the ability of TGF?1 to induce mRNA expression of essentially all TGF?1-responsive genes (139/147), including those involved with a hyperproliferative response. Results from microarray analysis were confirmed using real time polymerase chain reaction analysis and a functional cell proliferation assay. Our results are consistent with the hypothesis that TAK1 inhibitors might be useful in treating fibroproliferative disorders, including that in the oral cavity.

SUBMITTER: Kuk H 

PROVIDER: S-EPMC4416036 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications

5Z-7-Oxozeanol Inhibits the Effects of TGFβ1 on Human Gingival Fibroblasts.

Kuk Hanna H   Hutchenreuther James J   Murphy-Marshman Hannah H   Carter David D   Leask Andrew A  

PloS one 20150430 4


Transforming growth factor (TGF)β acts on fibroblasts to promote the production and remodeling of extracellular matrix (ECM). In adult humans, excessive action of TGFβ is associated with fibrotic disease and fibroproliferative conditions, including gingival hyperplasia. Understanding how the TGFβ1 signals in fibroblasts is therefore likely to result in valuable insights into the fundamental mechanisms underlying fibroproliferative disorders. Previously, we used the TAK1 inhibitor (5Z)-7-Oxozeaen  ...[more]

Similar Datasets

2015-02-26 | GSE65069 | GEO
2015-02-26 | E-GEOD-65069 | biostudies-arrayexpress
| S-EPMC2862373 | biostudies-literature
| S-EPMC8468467 | biostudies-literature
| S-EPMC4444236 | biostudies-literature
| S-EPMC5713626 | biostudies-literature
| S-EPMC9873657 | biostudies-literature
| S-EPMC9688082 | biostudies-literature
| S-EPMC7993872 | biostudies-literature
| S-EPMC8180082 | biostudies-literature