Ontology highlight
ABSTRACT: Background
Conjugated and drug loaded silver nanoparticles are getting an increased attention for various biomedical applications. Nanoconjugates showed significant enhancement in biological activity in comparison to free drug molecules. In this perspective, we report the synthesis of bioactive silver capped with 5-Amino-?-resorcylic acid hydrochloride dihydrate (AR). The in vitro antimicrobial (antibacterial, antifungal), enzyme inhibition (xanthine oxidase, urease, carbonic anhydrase, ?-chymotrypsin, cholinesterase) and antioxidant activities of the developed nanostructures was investigated before and after conjugation to silver metal.Results
The conjugation of AR to silver was confirmed through FTIR, UV-vis and TEM techniques. The amount of AR conjugated with silver was characterized through UV-vis spectroscopy and found to be 9% by weight. The stability of synthesized nanoconjugates against temperature, high salt concentration and pH was found to be good. Nanoconjugates, showed significant synergic enzyme inhibition effect against xanthine and urease enzymes in comparison to standard drugs, pure ligand and silver.Conclusions
Our synthesized nanoconjugate was found be to efficient selective xanthine and urease inhibitors in comparison to Ag and AR. On a per weight basis, our nanoconjugates required less amount of AR (about 11 times) for inhibition of these enzymes.
SUBMITTER: Naz SS
PROVIDER: S-EPMC4422292 | biostudies-literature | 2014 Sep
REPOSITORIES: biostudies-literature
Journal of nanobiotechnology 20140909
<h4>Background</h4>Conjugated and drug loaded silver nanoparticles are getting an increased attention for various biomedical applications. Nanoconjugates showed significant enhancement in biological activity in comparison to free drug molecules. In this perspective, we report the synthesis of bioactive silver capped with 5-Amino-β-resorcylic acid hydrochloride dihydrate (AR). The in vitro antimicrobial (antibacterial, antifungal), enzyme inhibition (xanthine oxidase, urease, carbonic anhydrase, ...[more]