Transcriptional Regulation, Metal Binding Properties and Structure of Pden1597, an Unusual Zinc Transport Protein from Paracoccus denitrificans.
Ontology highlight
ABSTRACT: ATP-binding cassette (ABC) transporters of the cluster 9 family are ubiquitous among bacteria and essential for acquiring Zn(2+) and Mn(2+) from the environment or, in the case of pathogens, from the host. These rely on a substrate-binding protein (SBP) to coordinate the relevant metal with high affinity and specificity and subsequently release it to a membrane permease for translocation into the cytoplasm. Although a number of cluster 9 SBP structures have been determined, the structural attributes conferring Zn(2+) or Mn(2+) specificity remain ambiguous. Here we describe the gene expression profile, in vitro metal binding properties, and crystal structure of a new cluster 9 SBP from Paracoccus denitrificans we have called AztC. Although all of our results strongly indicate Zn(2+) over Mn(2+) specificity, the Zn(2+) ion is coordinated by a conserved Asp residue only observed to date as a metal ligand in Mn(2+)-specific SBPs. The unusual sequence properties of this protein are shared among close homologues, including members from the human pathogens Klebsiella pneumonia and Enterobacter aerogenes, and would seem to suggest a subclass of Zn(2+)-specific transporters among the cluster 9 family. In any case, the unusual coordination environment of AztC expands the already considerable range of those available to Zn(2+)-specific SBPs and highlights the presence of a His-rich loop as the most reliable indicator of Zn(2+) specificity.
SUBMITTER: Handali M
PROVIDER: S-EPMC4424328 | biostudies-literature | 2015 May
REPOSITORIES: biostudies-literature
ACCESS DATA