Dynamic Sialylation in Transforming Growth Factor-? (TGF-?)-induced Epithelial to Mesenchymal Transition.
Ontology highlight
ABSTRACT: Epithelial-mesenchymal transition (EMT) is a fundamental process in embryonic development and organ formation. Aberrant regulation of EMT often leads to tumor progression. Changes in cell surface sialylation have recently been implicated in mediating EMT. Herein we report the visualization of dynamic changes of sialylation and glycoproteomic analysis of newly synthesized sialylated proteins in EMT by metabolic labeling of sialylated glycans with azides, followed by click labeling with fluorophores or affinity tags. We discovered that sialylation was down-regulated during EMT but then reverted and up-regulated in the mesenchymal state after EMT, accompanied by mRNA expression level changes of genes involved in the sialic acid biosynthesis. Quantitative proteomic analysis identified a list of sialylated proteins whose biosynthesis was dynamically regulated during EMT. Sialylation of cell surface adherent receptor integrin ?4 was found to be down-regulated, which may regulate integrin functions during EMT. Furthermore, a global sialylation inhibitor was used to probe the functional role of sialylation during EMT. We found that inhibition of sialylation promoted EMT. Taken together, our findings suggest the important role of sialylation in regulating EMT and imply its possible function in related pathophysiological events, such as cancer metastasis.
SUBMITTER: Du J
PROVIDER: S-EPMC4424337 | biostudies-literature | 2015 May
REPOSITORIES: biostudies-literature
ACCESS DATA