Dynamic diffusion-tensor measurements in muscle tissue using the single-line multiple-echo diffusion-tensor acquisition technique at 3T.
Ontology highlight
ABSTRACT: When diffusion biomarkers display transient changes, i.e. in muscle following exercise, traditional diffusion-tensor imaging (DTI) methods lack the temporal resolution to resolve the dynamics. This article presents an MRI method for dynamic diffusion-tensor acquisitions on a clinical 3T scanner. This method, the Single-Line Multiple-Echo Diffusion-Tensor Acquisition Technique (SL-MEDITATE), achieves a high temporal resolution (4 s) by rapid diffusion encoding through the acquisition of multiple echoes with unique diffusion sensitization and limiting the readout to a single line volume. The method is demonstrated in a rotating anisotropic phantom, a flow phantom with adjustable flow speed and in vivo skeletal calf muscle of healthy volunteers following a plantar flexion exercise. The rotating and flow-varying phantom experiments show that SL-MEDITATE correctly identifies the rotation of the first diffusion eigenvector and the changes in diffusion-tensor parameter magnitudes, respectively. Immediately following exercise, the in vivo mean diffusivity (MD) time courses show, before the well-known increase, an initial decrease that is not typically observed in traditional DTI. In conclusion, SL-MEDITATE can be used to capture transient changes in tissue anisotropy in a single line. Future progress might allow for dynamic DTI when combined with appropriate k-space trajectories and compressed sensing reconstruction.
SUBMITTER: Baete SH
PROVIDER: S-EPMC4433040 | biostudies-literature | 2015 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA