Role of nuclear factor erythroid 2-related factor 2 in the oxidative stress-dependent hypertension associated with the depletion of DJ-1.
Ontology highlight
ABSTRACT: Renal dopamine 2 receptor dysfunction is associated with oxidative stress and high blood pressure (BP). We have reported that DJ-1, an oxidative stress response protein, is positively regulated by dopamine 2 receptor in the kidney. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) regulates the expression of several antioxidant genes. We tested the hypothesis that Nrf2 is involved in the renal DJ-1-mediated inhibition of reactive oxygen species production. We have reported that silencing dopamine 2 receptor in mouse renal proximal tubule cells decreases the expression of DJ-1. We now report that silencing DJ-1 or dopamine 2 receptor in mouse proximal tubule cells and mouse kidneys decreases Nrf2 expression and activity and increases reactive oxygen species production; BP is also increased in mice in which renal DJ-1 or dopamine 2 receptor is silenced. DJ-1(-/-) mice have decreased renal Nrf2 expression and activity and increased nitro-tyrosine levels and BP. Silencing Nrf2 in mouse proximal tubule cells does not alter the expression of DJ-1 or dopamine 2 receptor, indicating that Nrf2 is downstream of dopamine 2 receptor and DJ-1. An Nrf2 inducer, bardoxolone, normalizes the systolic BP and renal malondialdehyde levels in DJ-1(-/-) mice without affecting them in their wild-type littermates. Because Nrf2 ubiquitination is increased in DJ-1(-/-) mice, we conclude that the protective effect of DJ-1 on renal oxidative stress is mediated, in part, by preventing Nrf2 degradation. Moreover, renal dopamine 2 receptor and DJ-1 are necessary for normal Nrf2 activity to keep a normal redox balance and BP.
SUBMITTER: Cuevas S
PROVIDER: S-EPMC4433423 | biostudies-literature | 2015 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA