Synergistic Effect of S224P and N383D Substitutions in the PA of H5N1 Avian Influenza Virus Contributes to Mammalian Adaptation.
Ontology highlight
ABSTRACT: The adaptation of H5N1 avian influenza viruses to human poses a great threat to public health. Previous studies indicate the adaptive mutations in viral polymerase of avian influenza viruses are major contributors in overcoming the host species barrier, with the majority of mammalian adaptive mutations occurring in the PB2 protein. However, the adaptive mutations in the PA protein of the H5N1 avian influenza virus are less defined and poorly understood. In this study, we identified the synergistic effect of the PA/224P + 383D of H5N1 avian influenza viruses and its ability to enhance the pathogenicity and viral replication in a mammalian mouse model. Interestingly, the signature of PA/224P + 383D mainly exists in mammalian isolates of the H5N1 influenza virus and pdmH1N1 influenza virus, providing a potential pathway for the natural adaptation to mammals which imply the effects of natural adaptation to mammals. Notably, the mutation of PA/383D, which is highly conserved in avian influenza viruses, increases the polymerase activity in both avian and human cells, and may have roles in maintaining the avian influenza virus in their avian reservoirs, and jumping species to infect humans.
SUBMITTER: Song J
PROVIDER: S-EPMC4441148 | biostudies-literature | 2015 May
REPOSITORIES: biostudies-literature
ACCESS DATA