Unknown

Dataset Information

0

Acyl-CoA Dehydrogenase Drives Heat Adaptation by Sequestering Fatty Acids.


ABSTRACT: Cells adapt to temperature shifts by adjusting levels of lipid desaturation and membrane fluidity. This fundamental process occurs in nearly all forms of life, but its mechanism in eukaryotes is unknown. We discovered that the evolutionarily conserved Caenorhabditis elegans gene acdh-11 (acyl-CoA dehydrogenase [ACDH]) facilitates heat adaptation by regulating the lipid desaturase FAT-7. Human ACDH deficiency causes the most common inherited disorders of fatty acid oxidation, with syndromes that are exacerbated by hyperthermia. Heat upregulates acdh-11 expression to decrease fat-7 expression. We solved the high-resolution crystal structure of ACDH-11 and established the molecular basis of its selective and high-affinity binding to C11/C12-chain fatty acids. ACDH-11 sequesters C11/C12-chain fatty acids and prevents these fatty acids from activating nuclear hormone receptors and driving fat-7 expression. Thus, the ACDH-11 pathway drives heat adaptation by linking temperature shifts to regulation of lipid desaturase levels and membrane fluidity via an unprecedented mode of fatty acid signaling.

SUBMITTER: Ma DK 

PROVIDER: S-EPMC4441829 | biostudies-literature | 2015 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Acyl-CoA Dehydrogenase Drives Heat Adaptation by Sequestering Fatty Acids.

Ma Dengke K DK   Li Zhijie Z   Lu Alice Y AY   Sun Fang F   Chen Sidi S   Rothe Michael M   Menzel Ralph R   Sun Fei F   Horvitz H Robert HR  

Cell 20150514 5


Cells adapt to temperature shifts by adjusting levels of lipid desaturation and membrane fluidity. This fundamental process occurs in nearly all forms of life, but its mechanism in eukaryotes is unknown. We discovered that the evolutionarily conserved Caenorhabditis elegans gene acdh-11 (acyl-CoA dehydrogenase [ACDH]) facilitates heat adaptation by regulating the lipid desaturase FAT-7. Human ACDH deficiency causes the most common inherited disorders of fatty acid oxidation, with syndromes that  ...[more]

Similar Datasets

| S-EPMC2905684 | biostudies-literature
| S-EPMC2431035 | biostudies-literature
| S-EPMC10468142 | biostudies-literature
| S-EPMC4493641 | biostudies-literature
| S-EPMC3265415 | biostudies-literature
| S-EPMC2946545 | biostudies-literature
| S-EPMC5798300 | biostudies-literature
| S-EPMC6597861 | biostudies-literature
| S-EPMC3097135 | biostudies-literature
| S-EPMC2910420 | biostudies-literature