Unknown

Dataset Information

0

Stable long-range interhemispheric coordination is supported by direct anatomical projections.


ABSTRACT: The functional interaction between the brain's two hemispheres includes a unique set of connections between corresponding regions in opposite hemispheres (i.e., homotopic regions) that are consistently reported to be exceptionally strong compared with other interhemispheric (i.e., heterotopic) connections. The strength of homotopic functional connectivity (FC) is thought to be mediated by the regions' shared functional roles and their structural connectivity. Recently, homotopic FC was reported to be stable over time despite the presence of dynamic FC across both intrahemispheric and heterotopic connections. Here we build on this work by considering whether homotopic FC is also stable across conditions. We additionally test the hypothesis that strong and stable homotopic FC is supported by the underlying structural connectivity. Consistent with previous findings, interhemispheric FC between homotopic regions were significantly stronger in both humans and macaques. Across conditions, homotopic FC was most resistant to change and therefore was more stable than heterotopic or intrahemispheric connections. Across time, homotopic FC had significantly greater temporal stability than other types of connections. Temporal stability of homotopic FC was facilitated by direct anatomical projections. Importantly, temporal stability varied with the change in conductive properties of callosal axons along the anterior-posterior axis. Taken together, these findings suggest a notable role for the corpus callosum in maintaining stable functional communication between hemispheres.

SUBMITTER: Shen K 

PROVIDER: S-EPMC4443345 | biostudies-literature | 2015 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Stable long-range interhemispheric coordination is supported by direct anatomical projections.

Shen Kelly K   Mišić Bratislav B   Cipollini Ben N BN   Bezgin Gleb G   Buschkuehl Martin M   Hutchison R Matthew RM   Jaeggi Susanne M SM   Kross Ethan E   Peltier Scott J SJ   Everling Stefan S   Jonides John J   McIntosh Anthony R AR   Berman Marc G MG  

Proceedings of the National Academy of Sciences of the United States of America 20150504 20


The functional interaction between the brain's two hemispheres includes a unique set of connections between corresponding regions in opposite hemispheres (i.e., homotopic regions) that are consistently reported to be exceptionally strong compared with other interhemispheric (i.e., heterotopic) connections. The strength of homotopic functional connectivity (FC) is thought to be mediated by the regions' shared functional roles and their structural connectivity. Recently, homotopic FC was reported  ...[more]

Similar Datasets

| S-EPMC3503189 | biostudies-other
| S-EPMC2270609 | biostudies-literature
| S-EPMC6866998 | biostudies-literature
| S-EPMC9653434 | biostudies-literature
| S-EPMC6492162 | biostudies-literature
| S-EPMC4113425 | biostudies-literature
| S-EPMC6858561 | biostudies-literature
2022-07-15 | GSE207708 | GEO
| S-EPMC3446206 | biostudies-literature
| S-EPMC6056328 | biostudies-literature