Unknown

Dataset Information

0

FTO Inhibits Insulin Secretion and Promotes NF-?B Activation through Positively Regulating ROS Production in Pancreatic ? cells.


ABSTRACT: FTO (Fat mass and obesity-associated) is associated with increased risk of obesity and type 2 diabetes incurrence. Pancreas islet ? cells dysfunction and insulin resistance are major causes of type 2 diabetes. However, whether FTO plays an important functional role in pancreatic ? cells as well as the related molecular mechanism is still unclear. In the present study, the tissue expression profile of FTO was firstly determined using quantitative PCR and western blot. FTO is widely expressed in various tissues and presented with relative high expression in pancreas tissue, especially in endocrine pancreas. FTO overexpression in MIN6 cells achieved by lentivirus delivery significantly inhibits insulin secretion in the presence of glucose stimulus as well as KCl. FTO silence has no effect on insulin secretion of MIN6 cells. However, FTO overexpression doesn't affect the transcription of insulin gene. Furthermore, reactive oxygen species (ROS) production and NF-?B activation are significantly promoted by FTO overexpression. Inhibition of intracellular ROS production by N-acetyl-L-cysteine (NAC) can alleviate NF-?B activation and restore the insulin secretion mediated by FTO overexpression. A whole transcript-microarray is employed to analyze the differential gene expression mediated by FTO overexpression. The genes which are modulated by FTO are involved in many important biological pathways such as G-protein coupled receptor signaling and NF-?B signaling. Therefore, our study indicates that FTO may contribute to pancreas islet ? cells dysfunction and the inhibition of FTO activity is a potential target for the treatment of diabetes.

SUBMITTER: Fan HQ 

PROVIDER: S-EPMC4446323 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications

FTO Inhibits Insulin Secretion and Promotes NF-κB Activation through Positively Regulating ROS Production in Pancreatic β cells.

Fan Hong-Qi HQ   He Wei W   Xu Kuan-Feng KF   Wang Zhi-Xiao ZX   Xu Xin-Yu XY   Chen Heng H  

PloS one 20150527 5


FTO (Fat mass and obesity-associated) is associated with increased risk of obesity and type 2 diabetes incurrence. Pancreas islet β cells dysfunction and insulin resistance are major causes of type 2 diabetes. However, whether FTO plays an important functional role in pancreatic β cells as well as the related molecular mechanism is still unclear. In the present study, the tissue expression profile of FTO was firstly determined using quantitative PCR and western blot. FTO is widely expressed in v  ...[more]

Similar Datasets

| S-EPMC8634046 | biostudies-literature
| S-EPMC6437768 | biostudies-literature
| S-EPMC6559235 | biostudies-literature
| S-EPMC7358642 | biostudies-literature
| S-EPMC10014187 | biostudies-literature
| S-EPMC6090372 | biostudies-literature
| S-EPMC5386742 | biostudies-literature
| S-EPMC10363593 | biostudies-literature
| S-EPMC7851739 | biostudies-literature
| S-EPMC7476719 | biostudies-literature