Unknown

Dataset Information

0

Water-Gas Shift and Methane Reactivity on Reducible Perovskite-Type Oxides.


ABSTRACT: Comparative (electro)catalytic, structural, and spectroscopic studies in hydrogen electro-oxidation, the (inverse) water-gas shift reaction, and methane conversion on two representative mixed ionic-electronic conducting perovskite-type materials La0.6Sr0.4FeO3-? (LSF) and SrTi0.7Fe0.3O3-? (STF) were performed with the aim of eventually correlating (electro)catalytic activity and associated structural changes and to highlight intrinsic reactivity characteristics as a function of the reduction state. Starting from a strongly prereduced (vacancy-rich) initial state, only (inverse) water-gas shift activity has been observed on both materials beyond ca. 450 °C but no catalytic methane reforming or methane decomposition reactivity up to 600 °C. In contrast, when starting from the fully oxidized state, total methane oxidation to CO2 was observed on both materials. The catalytic performance of both perovskite-type oxides is thus strongly dependent on the degree/depth of reduction, on the associated reactivity of the remaining lattice oxygen, and on the reduction-induced oxygen vacancies. The latter are clearly more reactive toward water on LSF, and this higher reactivity is linked to the superior electrocatalytic performance of LSF in hydrogen oxidation. Combined electron microscopy, X-ray diffraction, and Raman measurements in turn also revealed altered surface and bulk structures and reactivities.

SUBMITTER: Thalinger R 

PROVIDER: S-EPMC4450368 | biostudies-literature | 2015 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Water-Gas Shift and Methane Reactivity on Reducible Perovskite-Type Oxides.

Thalinger Ramona R   Opitz Alexander K AK   Kogler Sandra S   Heggen Marc M   Stroppa Daniel D   Schmidmair Daniela D   Tappert Ralf R   Fleig Jürgen J   Klötzer Bernhard B   Penner Simon S  

The journal of physical chemistry. C, Nanomaterials and interfaces 20150504 21


Comparative (electro)catalytic, structural, and spectroscopic studies in hydrogen electro-oxidation, the (inverse) water-gas shift reaction, and methane conversion on two representative mixed ionic-electronic conducting perovskite-type materials La<sub>0.6</sub>Sr<sub>0.4</sub>FeO<sub>3-δ</sub> (LSF) and SrTi<sub>0.7</sub>Fe<sub>0.3</sub>O<sub>3-δ</sub> (STF) were performed with the aim of eventually correlating (electro)catalytic activity and associated structural changes and to highlight intri  ...[more]

Similar Datasets

| S-EPMC8208302 | biostudies-literature
| S-EPMC8981221 | biostudies-literature
| S-EPMC9080832 | biostudies-literature
| S-EPMC6864495 | biostudies-literature
| S-EPMC6008792 | biostudies-literature
| S-EPMC3100993 | biostudies-literature
| S-EPMC6876187 | biostudies-literature
| S-EPMC6994687 | biostudies-literature
| S-EPMC5591213 | biostudies-literature
| S-EPMC6325145 | biostudies-literature