Unknown

Dataset Information

0

Nanometer-scale water- and proton-diffusion heterogeneities across water channels in polymer electrolyte membranes.


ABSTRACT: Nafion, the most widely used polymer for electrolyte membranes (PEMs) in fuel cells, consists of a fluorocarbon backbone and acidic groups that, upon hydration, swell to form percolated channels through which water and ions diffuse. Although the effects of the channel structures and the acidic groups on water/ion transport have been studied before, the surface chemistry or the spatially heterogeneous diffusivity across water channels has never been shown to directly influence water/ion transport. By the use of molecular spin probes that are selectively partitioned into heterogeneous regions of the PEM and Overhauser dynamic nuclear polarization relaxometry, this study reveals that both water and proton diffusivity are significantly faster near the fluorocarbon and the acidic groups lining the water channels than within the water channels. The concept that surface chemistry at the (sub)nanometer scale dictates water and proton diffusivity invokes a new design principle for PEMs.

SUBMITTER: Song J 

PROVIDER: S-EPMC4450673 | biostudies-literature | 2015 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Nanometer-scale water- and proton-diffusion heterogeneities across water channels in polymer electrolyte membranes.

Song Jinsuk J   Han Oc Hee OH   Han Songi S  

Angewandte Chemie (International ed. in English) 20150128 12


Nafion, the most widely used polymer for electrolyte membranes (PEMs) in fuel cells, consists of a fluorocarbon backbone and acidic groups that, upon hydration, swell to form percolated channels through which water and ions diffuse. Although the effects of the channel structures and the acidic groups on water/ion transport have been studied before, the surface chemistry or the spatially heterogeneous diffusivity across water channels has never been shown to directly influence water/ion transport  ...[more]

Similar Datasets

| S-EPMC2837776 | biostudies-literature
| S-EPMC4802542 | biostudies-other
| S-EPMC3175815 | biostudies-literature
| S-EPMC6644771 | biostudies-literature
| S-EPMC8243320 | biostudies-literature
| S-EPMC6381100 | biostudies-literature
| S-EPMC7160156 | biostudies-literature
| S-EPMC5567110 | biostudies-literature