Unknown

Dataset Information

0

High density lipoprotein promotes proliferation of adipose-derived stem cells via S1P1 receptor and Akt, ERK1/2 signal pathways.


ABSTRACT: INTRODUCTION:Adipose-derived stem cells (ADSC) are non-hematopoietic mesenchymal stem cells that have shown great promise in their ability to differentiate into multiple cell lineages. Their ubiquitous nature and the ease of harvesting have attracted the attention of many researchers, and they pose as an ideal candidate for applications in regenerative medicine. Several reports have demonstrated that transplanting ADSC can promote repair of injured tissue and angiogenesis in animal models. Survival of these cells after transplant remains a key limiting factor for the success of ADSC transplantation. Circulating factors like High Density Lipoprotein (HDL) has been known to promote survival of other stems cells like bone marrow derived stem cells and endothelial progenitor cells, both by proliferation and by inhibiting cell apoptosis. The effect of HDL on transplanted adipose-derived stem cells in vivo is largely unknown. METHODS:This study focused on exploring the effects of plasma HDL on ADSC and delineating the mechanisms involved in their proliferation after entering the bloodstream. Using the MTT and BrdU assays, we tested the effects of HDL on ADSC proliferation. We probed the downstream intracellular Akt and ERK1/2 signaling pathways and expression of cyclin proteins in ADSC using western blot. RESULTS:Our study found that HDL promotes proliferation of ADSC, by binding to sphingosine-1- phosphate receptor-1(S1P1) on the cell membrane. This interaction led to activation of intracellular Akt and ERK1/2 signaling pathways, resulting in increased expression of cyclin D1 and cyclin E, and simultaneous reduction in expression of cyclin-dependent kinase inhibitors p21 and p27, therefore promoting cell cycle progression and cell proliferation. CONCLUSIONS:These studies raise the possibility that HDL may be a physiologic regulator of stem cells and increasing HDL concentrations may be valuable strategy to promote ADSC transplantation.

SUBMITTER: Shen H 

PROVIDER: S-EPMC4453044 | biostudies-literature | 2015 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

High density lipoprotein promotes proliferation of adipose-derived stem cells via S1P1 receptor and Akt, ERK1/2 signal pathways.

Shen Haitao H   Zhou Enchen E   Wei Xiujing X   Fu Zhiwei Z   Niu Chenguang C   Li Yang Y   Pan Bing B   Mathew Anna V AV   Wang Xu X   Pennathur Subramaniam S   Zheng Lemin L   Wang Yongyu Y  

Stem cell research & therapy 20150515


<h4>Introduction</h4>Adipose-derived stem cells (ADSC) are non-hematopoietic mesenchymal stem cells that have shown great promise in their ability to differentiate into multiple cell lineages. Their ubiquitous nature and the ease of harvesting have attracted the attention of many researchers, and they pose as an ideal candidate for applications in regenerative medicine. Several reports have demonstrated that transplanting ADSC can promote repair of injured tissue and angiogenesis in animal model  ...[more]

Similar Datasets

| S-EPMC6094877 | biostudies-literature
| S-EPMC6990915 | biostudies-literature
| S-EPMC9842938 | biostudies-literature
| S-EPMC6111072 | biostudies-literature
| S-EPMC10281536 | biostudies-literature
| S-EPMC4924667 | biostudies-literature
| S-EPMC9225846 | biostudies-literature
| S-EPMC2797175 | biostudies-literature
2024-08-31 | GSE253866 | GEO
| S-EPMC7697660 | biostudies-literature