Chemical synthesis of a two-photon-activatable chemokine and photon-guided lymphocyte migration in vivo.
Ontology highlight
ABSTRACT: Chemokine-guided lymphocyte positioning in tissues is crucial for normal operation of the immune system. Direct, real-time manipulation and measurement of single-cell responses to chemokines is highly desired for investigating the cell biology of lymphocyte migration in vivo. Here we report the development of the first two-photon-activatable chemokine CCL5 through efficient one-pot total chemical synthesis in milligram scale. By spatiotemporally controlled photoactivation, we show at the single-cell level that T cells perceive the directional cue without relying on PI3K activities, which are nonetheless required for persistent migration over an extended period of time. By intravital imaging, we demonstrate artificial T-cell positioning in cutaneous tissues and lymph nodes. This work establishes a general strategy to develop high-quality photo-activatable protein agents through tailor-designed caging of multiple residues and highlights the potential of photo-activatable chemokines for understanding and potential therapeutic manipulation of cell positioning and position-controlled cell behaviours in vivo.
SUBMITTER: Chen X
PROVIDER: S-EPMC4455097 | biostudies-literature | 2015
REPOSITORIES: biostudies-literature
ACCESS DATA