Ontology highlight
ABSTRACT: Key message
In germinating pollen grains and growing pollen tubes, CRT is translated on ER membrane-bound ribosomes in the regions where its activity is required for stabilization of tip-focused Ca (2+) gradient. Pollen tube growth requires coordination of signaling, exocytosis, and actin cytoskeletal organization. Many of these processes are thought to be controlled by finely tuned regulation of cytoplasmic Ca(2+) in discrete regions of the tube cytoplasm. Most notably, a mechanism must function to maintain a steep gradient of Ca(2+) that exists at the tip of growing pollen tube. Several pieces of evidence point to calreticulin (CRT) as a key Ca(2+)-binding/-buffering protein involved in pollen germination and pollen tube growth. We previously hypothesized that in germinating pollen and growing tubes, CRT is translated on the ribosomes associated with endoplasmic reticulum (ER) in the regions where its activity might be required. In this report, we have addressed this idea by identifying the sites where CRT mRNA, CRT protein, 18S rRNA, and rough ER are localized in Petunia pollen tubes. We observed all four components in the germinal aperture of pollen grains and in subapical regions of elongating tubes. These results seem to support our idea that CRT is translated on ER membrane-bound ribosomes during pollen germination and pollen tube growth. In elongated pollen tubes, we found CRT mainly localized in the subapical zone, where ER and Golgi stacks are abundant. In eukaryotic cells, these organelles serve as mobile intracellular stores of easily releasable Ca(2+), which can be buffered by proteins such as CRT. Therefore, we postulate that subapical-localized CRT is involved in pollen tube growth by maintaining the stable tip-focused Ca(2+) gradient and thus modulating local Ca(2+) concentration within the tube cytoplasm.
SUBMITTER: Suwinska A
PROVIDER: S-EPMC4464644 | biostudies-literature |
REPOSITORIES: biostudies-literature