Ontology highlight
ABSTRACT:
SUBMITTER: Stone J
PROVIDER: S-EPMC4470785 | biostudies-literature | 2015 Jun
REPOSITORIES: biostudies-literature
Stone Jennifer J Thompson Deborah J DJ Dos Santos Silva Isabel I Scott Christopher C Tamimi Rulla M RM Lindstrom Sara S Kraft Peter P Hazra Aditi A Li Jingmei J Eriksson Louise L Czene Kamila K Hall Per P Jensen Matt M Cunningham Julie J Olson Janet E JE Purrington Kristen K Couch Fergus J FJ Brown Judith J Leyland Jean J Warren Ruth M L RM Luben Robert N RN Khaw Kay-Tee KT Smith Paula P Wareham Nicholas J NJ Jud Sebastian M SM Heusinger Katharina K Beckmann Matthias W MW Douglas Julie A JA Shah Kaanan P KP Chan Heang-Ping HP Helvie Mark A MA Le Marchand Loic L Kolonel Laurence N LN Woolcott Christy C Maskarinec Gertraud G Haiman Christopher C Giles Graham G GG Baglietto Laura L Krishnan Kavitha K Southey Melissa C MC Apicella Carmel C Andrulis Irene L IL Knight Julia A JA Ursin Giske G Alnaes Grethe I Grenaker GI Kristensen Vessela N VN Borresen-Dale Anne-Lise AL Gram Inger Torhild IT Bolla Manjeet K MK Wang Qin Q Michailidou Kyriaki K Dennis Joe J Simard Jacques J Pharoah Paul P Dunning Alison M AM Easton Douglas F DF Fasching Peter A PA Pankratz V Shane VS Hopper John L JL Vachon Celine M CM
Cancer research 20150410 12
Mammographic density measures adjusted for age and body mass index (BMI) are heritable predictors of breast cancer risk, but few mammographic density-associated genetic variants have been identified. Using data for 10,727 women from two international consortia, we estimated associations between 77 common breast cancer susceptibility variants and absolute dense area, percent dense area and absolute nondense area adjusted for study, age, and BMI using mixed linear modeling. We found strong support ...[more]