Unknown

Dataset Information

0

Highly Active and Specific Tyrosine Ammonia-Lyases from Diverse Origins Enable Enhanced Production of Aromatic Compounds in Bacteria and Saccharomyces cerevisiae.


ABSTRACT: Phenylalanine and tyrosine ammonia-lyases form cinnamic acid and p-coumaric acid, which are precursors of a wide range of aromatic compounds of biotechnological interest. Lack of highly active and specific tyrosine ammonia-lyases has previously been a limitation in metabolic engineering approaches. We therefore identified 22 sequences in silico using synteny information and aiming for sequence divergence. We performed a comparative in vivo study, expressing the genes intracellularly in bacteria and yeast. When produced heterologously, some enzymes resulted in significantly higher production of p-coumaric acid in several different industrially important production organisms. Three novel enzymes were found to have activity exclusively for phenylalanine, including an enzyme from the low-GC Gram-positive bacterium Brevibacillus laterosporus, a bacterial-type enzyme from the amoeba Dictyostelium discoideum, and a phenylalanine ammonia-lyase from the moss Physcomitrella patens (producing 230 ?M cinnamic acid per unit of optical density at 600 nm [OD600]) in the medium using Escherichia coli as the heterologous host). Novel tyrosine ammonia-lyases having higher reported substrate specificity than previously characterized enzymes were also identified. Enzymes from Herpetosiphon aurantiacus and Flavobacterium johnsoniae resulted in high production of p-coumaric acid in Escherichia coli (producing 440 ?M p-coumaric acid OD600 unit(-1) in the medium) and in Lactococcus lactis. The enzymes were also efficient in Saccharomyces cerevisiae, where p-coumaric acid accumulation was improved 5-fold over that in strains expressing previously characterized tyrosine ammonia-lyases.

SUBMITTER: Jendresen CB 

PROVIDER: S-EPMC4475877 | biostudies-literature | 2015 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Highly Active and Specific Tyrosine Ammonia-Lyases from Diverse Origins Enable Enhanced Production of Aromatic Compounds in Bacteria and Saccharomyces cerevisiae.

Jendresen Christian Bille CB   Stahlhut Steen Gustav SG   Li Mingji M   Gaspar Paula P   Siedler Solvej S   Förster Jochen J   Maury Jérôme J   Borodina Irina I   Nielsen Alex Toftgaard AT  

Applied and environmental microbiology 20150424 13


Phenylalanine and tyrosine ammonia-lyases form cinnamic acid and p-coumaric acid, which are precursors of a wide range of aromatic compounds of biotechnological interest. Lack of highly active and specific tyrosine ammonia-lyases has previously been a limitation in metabolic engineering approaches. We therefore identified 22 sequences in silico using synteny information and aiming for sequence divergence. We performed a comparative in vivo study, expressing the genes intracellularly in bacteria  ...[more]

Similar Datasets

| S-EPMC395781 | biostudies-literature
| S-EPMC2859959 | biostudies-literature
| S-EPMC9321829 | biostudies-literature
| S-EPMC1217762 | biostudies-other
| S-EPMC5465573 | biostudies-literature
| S-EPMC6753640 | biostudies-literature
| S-EPMC2732597 | biostudies-literature
| S-EPMC9313006 | biostudies-literature
| S-EPMC6987202 | biostudies-literature
| S-EPMC4440718 | biostudies-literature