Unknown

Dataset Information

0

Late INa increases diastolic SR-Ca2+-leak in atrial myocardium by activating PKA and CaMKII.


ABSTRACT: Enhanced cardiac late Na current (late INa) and increased sarcoplasmic reticulum (SR)-Ca(2+)-leak are both highly arrhythmogenic. This study seeks to identify signalling pathways interconnecting late INa and SR-Ca(2+)-leak in atrial cardiomyocytes (CMs).In murine atrial CMs, SR-Ca(2+)-leak was increased by the late INa enhancer Anemonia sulcata toxin II (ATX-II). An inhibition of Ca(2+)/calmodulin-dependent protein kinase II (Autocamide-2-related inhibitory peptide), protein kinase A (H89), or late INa (Ranolazine or Tetrodotoxin) all prevented ATX-II-dependent SR-Ca(2+)-leak. The SR-Ca(2+)-leak induction by ATX-II was not detected when either the Na(+)/Ca(2+) exchanger was inhibited (KBR) or in CaMKII?c-knockout mice. FRET measurements revealed increased cAMP levels upon ATX-II stimulation, which could be prevented by inhibition of adenylyl cyclases (ACs) 5 and 6 (NKY 80) but not by inhibition of phosphodiesterases (IBMX), suggesting PKA activation via an AC-dependent increase of cAMP levels. Western blots showed late INa-dependent hyperphosphorylation of CaMKII as well as PKA target sites at ryanodine receptor type-2 (-S2814 and -S2808) and phospholamban (-Thr17, -S16). Enhancement of late INa did not alter Ca(2+)-transient amplitude or SR-Ca(2+)-load. However, upon late INa activation and simultaneous CaMKII inhibition, Ca(2+)-transient amplitude and SR-Ca(2+)-load were increased, whereas PKA inhibition reduced Ca(2+)-transient amplitude and load and additionally slowed Ca(2+) elimination. In atrial CMs from patients with atrial fibrillation, inhibition of late INa, CaMKII, or PKA reduced the SR-Ca(2+)-leak.Late INa exerts distinct effects on Ca(2+) homeostasis in atrial myocardium through activation of CaMKII and PKA. Inhibition of late INa represents a potential approach to attenuate CaMKII activation and decreases SR-Ca(2+)-leak in atrial rhythm disorders. The interconnection with the cAMP/PKA system further increases the antiarrhythmic potential of late INa inhibition.

SUBMITTER: Fischer TH 

PROVIDER: S-EPMC4476413 | biostudies-literature | 2015 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications


<h4>Aims</h4>Enhanced cardiac late Na current (late INa) and increased sarcoplasmic reticulum (SR)-Ca(2+)-leak are both highly arrhythmogenic. This study seeks to identify signalling pathways interconnecting late INa and SR-Ca(2+)-leak in atrial cardiomyocytes (CMs).<h4>Methods and results</h4>In murine atrial CMs, SR-Ca(2+)-leak was increased by the late INa enhancer Anemonia sulcata toxin II (ATX-II). An inhibition of Ca(2+)/calmodulin-dependent protein kinase II (Autocamide-2-related inhibito  ...[more]

Similar Datasets

| S-EPMC8868143 | biostudies-literature
| S-EPMC3674825 | biostudies-literature
| S-EPMC7530131 | biostudies-literature
| S-EPMC4530053 | biostudies-literature
| S-EPMC5337148 | biostudies-literature
| S-EPMC3449255 | biostudies-literature
| S-EPMC2891122 | biostudies-literature
| S-EPMC2807967 | biostudies-literature
| S-EPMC4133594 | biostudies-literature
| S-EPMC2607013 | biostudies-literature