Project description:IntroductionPrimary retinitis pigmentosa (RP) is a common hereditary retinal disease in ophthalmology that has a considerable impact on quality of life, but there are few effective therapeutic strategies. This trial aims to determine the efficacy and safety of acupuncture versus sham acupuncture (SA) for RP.Methods and analysisThis is a study protocol for a randomised, participant-blind, sham-controlled trial. 64 eligible patients with RP will randomly be divided into acupuncture group and SA group. All groups will receive 48 sessions over 3 months. Participants will complete the trial by visiting the research centre in month 6/9 for a follow-up assessment. The primary outcome is visual field mean sensitivity and visual field mean deviation at month 3/6/9 compared with baseline. Secondary outcomes include the best-corrected visual acuity, central macular thickness, subfoveal choroidal thicknes, traditional Chinese medicine syndrome score and the scale of life quality for diseases with visual impairment at month 3/6/9 compared with baseline. Adverse events and safety indexes will be recorded throughout the study. SPSS V.25.0 statistical software was used for analysis, and measurement data were expressed as mean±SD.Ethics and disseminationEthics approval was obtained from the Ethics Committee of the Chinese Clinical Trial Registry (approval no: ChiECRCT20200460). The results of this study will be published in a peer-reviewed journal, and trial participants will be informed via email and/or phone calls.Trial registration numberChiCTR2000041090.
Project description:Purpose:Retinitis pigmentosa is a family of genetic diseases inducing progressive photoreceptor degeneration. There is no cure for retinitis pigmentosa, but prospective therapeutic strategies are aimed at restoring or substituting retinal input. Yet, it is unclear whether the visual cortex of retinitis pigmentosa patients retains plasticity to react to the restored visual input. Methods:To investigate short-term visual cortical plasticity in retinitis pigmentosa, we tested the effect of short-term (2 hours) monocular deprivation on sensory ocular dominance (measured with binocular rivalry) in a group of 14 patients diagnosed with retinitis pigmentosa with a central visual field sparing greater than 20° in diameter. Results:After deprivation most patients showed a perceptual shift in ocular dominance in favor of the deprived eye (P < 0.001), as did control subjects, indicating a level of visual cortical plasticity in the normal range. The deprivation effect correlated negatively with visual acuity (r = -0.63, P = 0.015), and with the amplitude of the central 18° focal electroretinogram (r = -0.68, P = 0.015) of the deprived eye, revealing that in retinitis pigmentosa stronger visual impairment is associated with higher plasticity. Conclusions:Our results provide a new tool to assess the ability of retinitis pigmentosa patients to adapt to altered visual inputs, and suggest that in retinitis pigmentosa the adult brain has sufficient short-term plasticity to benefit from prospective therapies.
Project description:Retinitis pigmentosa (RP) is a family of inherited disorders caused by the progressive degeneration of retinal photoreceptors. There is no cure for RP, but recent research advances have provided promising results from many clinical trials. All these therapeutic strategies are focused on preserving existing photoreceptors or substituting light-responsive elements. Vision recovery, however, strongly relies on the anatomical and functional integrity of the visual system beyond photoreceptors. Although the retinal structure and optic pathway are substantially preserved at least in early stages of RP, studies describing the visual cortex status are missing. Using a well-established mouse model of RP, we analyzed the response of visual cortical circuits to the progressive degeneration of photoreceptors. We demonstrated that the visual cortex goes through a transient and previously undescribed alteration in the local excitation/inhibition balance, with a net shift towards increased intracortical inhibition leading to improved filtering and decoding of corrupted visual inputs. These results suggest a compensatory action of the visual cortex that increases the range of residual visual sensitivity in RP.
Project description:PurposeAutosomal recessive retinitis pigmentosa (arRP) can be caused by mutations in the phosphodiesterase 6A (PDE6A) gene. Here, we describe the natural course of disease progression with respect to central retinal function (i.e., visual acuity, contrast sensitivity, and color vision) and establish a detailed genotype--phenotype correlation.MethodsForty-four patients (26 females; mean age ± SD, 43 ± 13 years) with a confirmed genetic diagnosis of PDE6A-associated arRP underwent comprehensive ophthalmological examinations including best-corrected visual acuity (BCVA) with Early Treatment Diabetic Retinopathy Study charts, contrast sensitivity (CS) with Pelli-Robson charts at distances of 3 m and 1 m, and color vision testing using Roth 28-Hue and Panel D-15 saturated color cups.ResultsThe most frequently observed variants were c.998+1G>A/p.?, c.304C>A/p.R102S, and c.2053G>A/p.V685M. Central retinal function in patients homozygous for variant c.304C>A/p.R102S was better when compared to patients homozygous for variant c.998+1G>A/p.?, although the former were older at baseline. Central retinal function was similar in patients homozygous for variant c.304C>A/p.R102S and patients heterozygous for variants c.304C>A/p.R102S and c.2053G>A/p.V685M, although the latter were younger at baseline. Annual decline rates in central retinal function were small.ConclusionsWe conclude that the severity of the different disease-causing PDE6A mutations in humans with respect to central visual function may be ranked as follows: c.2053G>A/p.V685M in homozygous state (most severe) > c.998+1G>A/p.? in homozygous state > c.304C>A/p.R102S and c.2053G>A/p.V685M in compound-heterozygous state > c.304C>A/p.R102S in homozygous state (mildest). The assessment of treatment efficacy in interventional trials will remain challenging due to small annual decline rates in central retinal function.
Project description:OBJECTIVES:To examine the effect of subthreshold diode micropulse laser (SDM) on pattern electroretinography (PERG) and visual function in retinitis pigmentosa (RP). METHODS:The records of all patients (pts) undergoing SDM in a vitreoretinal subspecialty practice were reviewed. Inclusion criteria included the presence of RP evaluated before and after SDM by PERG. As a secondary outcome measure, the results of automated omnifield resolution perimetry (ORP) were also reviewed. RESULTS:All eyes undergoing SDM for RP were eligible study, including 26 eyes of 15 pts; seven male and eight female, aged 16-69 (avg. 47) years. Retinal function by PERG improved by all indices, with significant improvements in the 24° field signal latency measures; the MagD(µV)/ Mag(µV) ratio (P < 0.0001) and the MagD(µV) amplitude (P = 0.0003). ORP significantly improved by all indices (p = 0.02-0.002). Average best-corrected chart visual acuities improved from 0.6 to 0.4 logMAR units (p = 0.02). There were no adverse treatment effects. CONCLUSIONS:SDM significantly improved chart visual acuity, mesopic logMAR visual acuity perimetry, and retinal function by PERG in RP without adverse treatment effects. Treatment responses indicate a significant capacity for rescue of dysfunctional retina. These results suggest that early and periodic treatment with SDM might slow disease progression and reduce long-term vision loss.
Project description:PurposeRetinal degeneration involves neuroinflammation, and pro-inflammatory cytokines/chemokines are markedly increased in the eyes of patients with retinitis pigmentosa (RP). In this study, we investigated the changes of serum cytokines/chemokines in RP, and their relationships with visual parameters.MethodsForty-five consecutive patients with typical RP aged 20 to -39 years and 28 age-matched and gender-matched controls were included. Fifteen cytokines (interleukin [IL]-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12p70, IL-13, 1L-15, IL-17, IL-23, interferon [IFN]-γ, and tumor necrosis factor [TNF]-α, TNF-β) and 9 chemokines (eotaxin, growth-related oncogene [GRO]-α, I-309, IL-8, IFN-γ-inducible protein [IP]-10, monocyte chemotactic protein [MCP]-1, MCP-2, regulated activation normal T-cell expressed and secreted [RANTES], and thymus and activated regulated chemokine [TARC]) in the serum were simultaneously measured by a multiplexed immunoarray (Q-Plex). Relationships between these cytokines/chemokines and indices of central vision, such as visual acuity (VA), the values of static perimetry tests (Humphrey Field analyzer, the central 10-2 program), and optical coherence tomography measures were analyzed in the patients with RP.ResultsAmong the 15 cytokines and 9 chemokines, serum IL-8 and RANTES levels were significantly increased in patients with RP compared with controls (IL-8: P < 0.0001; RANTES: P < 0.0001). Among the elevated cytokines/chemokines, the levels of IL-8 were negatively correlated with VA (ρ = 0.3596 and P = 0.0165), and the average retinal sensitivity of four central points (ρ = -0.3691 and P = 0.0291), and 12 central points (ρ = -0.3491 and P = 0.0398), as well as the central subfield thickness (ρ = -0.3961 and P = 0.0094), and ellipsoid zone width (ρ = -0.3841 and P = 0.0120).ConclusionsPeripheral inflammatory response may be activated and serum IL-8 levels are associated with central vision in patients with RP.
Project description:Approximately 36 000 cases of simplex and familial retinitis pigmentosa (RP) worldwide are caused by a loss in phosphodiesterase (PDE6) function. In the preclinical Pde6?(nmf363) mouse model of this disease, defects in the ?-subunit of PDE6 result in a progressive loss of photoreceptors and neuronal function. We hypothesized that increasing PDE6? levels using an AAV2/8 gene therapy vector could improve photoreceptor survival and retinal function. We utilized a vector with the cell-type-specific rhodopsin (RHO) promoter: AAV2/8(Y733F)-Rho-Pde6?, to transduce Pde6?(nmf363) retinas and monitored its effects over a 6-month period (a quarter of the mouse lifespan). We found that a single injection enhanced survival of photoreceptors and improved retinal function. At 6 months of age, the treated eyes retained photoreceptor cell bodies, while there were no detectable photoreceptors remaining in the untreated eyes. More importantly, the treated eyes demonstrated functional visual responses even after the untreated eyes had lost all vision. Despite focal rescue of the retinal structure adjacent to the injection site, global functional rescue of the entire retina was observed. These results suggest that RP due to PDE6? deficiency in humans, in addition to PDE6? deficiency, is also likely to be treatable by gene therapy.
Project description:To study whether C57BL/6J-Tyr/J (C2J) mouse embryonic stem (ES) cells can differentiate into retinal pigment epithelial (RPE) cells in vitro and then restore retinal function in a model for retinitis pigmentosa: Rpe65/Rpe65 C57BL6 mice.Yellow fluorescent protein (YFP)-labeled C2J ES cells were induced to differentiate into RPE-like structures on PA6 feeders. RPE-specific markers are expressed from differentiated cells in vitro. After differentiation, ES cell-derived RPE-like cells were transplanted into the subretinal space of postnatal day 5 Rpe65/Rpe65 mice. Live imaging of YFP-labeled C2J ES cells demonstrated survival of the graft. Electroretinograms (ERGs) were performed on transplanted mice to evaluate the functional outcome of transplantation.RPE-like cells derived from ES cells sequentially express multiple RPE-specific markers. After transplantation, YFP-labeled cells can be tracked with live imaging for as long as 7 months. Although more than half of the mice were complicated with retinal detachments or tumor development, one fourth of the mice showed increased electroretinogram responses in the transplanted eyes. Rpe65/Rpe65 mice transplanted with RPE-like cells showed significant visual recovery during a 7-month period, whereas those injected with saline, PA6 feeders, or undifferentiated ES cells showed no rescue.ES cells can differentiate, morphologically, and functionally, into RPE-like cells. Based on these findings, differentiated ES cells have the potential for the development of new therapeutic approaches for RPE-specific diseases such as certain forms of retinitis pigmentosa and macular degeneration. Nevertheless, stringent control of retinal detachment and teratoma development will be necessary before initiation of treatment trials.
Project description:To evaluate changes in the visual processing of patients with progressive retinitis pigmentosa (RP) who acquired improved reading capability by eye-movement training (EMT), we performed functional magnetic resonance imaging (fMRI) before and after EMT. Six patients with bilateral concentric contraction caused by pigmentary degeneration of the retina and 6 normal volunteers were recruited. Patients were given EMT for 5 min every day for 8-10 months. fMRI data were acquired on a 3.0-Tesla scanner while subjects were performing reading tasks. In separate experiments (before fMRI scanning), visual performances for readings were measured by the number of letters read correctly in 5 min. Before EMT, activation areas of the primary visual cortex of patients were 48.8% of those of the controls. The number of letters read correctly in 5 min was 36.6% of those by the normal volunteers. After EMT, the activation areas of patients were not changed or slightly decreased; however, reading performance increased in 5 of 6 patients, which was 46.6% of that of the normal volunteers (p< 0.05). After EMT, increased activity was observed in the frontal eye fields (FEFs) of all patients; however, increases in the activity of the parietal eye fields (PEFs) were observed only in patients who showed greater improvement in reading capability. The improvement in reading ability of the patients after EMT is regarded as an effect of the increased activity of FEF and PEF, which play important roles in attention and working memory as well as the regulation of eye movements.
Project description:Retinitis pigmentosa is a leading cause of inherited blindness, with no effective treatment currently available. Mutations primarily in genes expressed in rod photoreceptors lead to early rod death, followed by a slower phase of cone photoreceptor death. Rd1 mice provide an invaluable animal model to evaluate therapies for the disease. We previously reported that overexpression of histone deacetylase 4 (HDAC4) prolongs rod survival in rd1 mice. Here we report a key role of a short N-terminal domain of HDAC4 in photoreceptor protection. Expression of this domain suppresses multiple cell death pathways in photoreceptor degeneration, and preserves even more rd1 rods than the full-length HDAC4 protein. Expression of a short N-terminal domain of HDAC4 as a transgene in mice carrying the rd1 mutation also prolongs the survival of cone photoreceptors, and partially restores visual function. Our results may facilitate the design of a small protein therapy for some forms of retinitis pigmentosa.