Unknown

Dataset Information

0

Unsupervised segmentation of low-contrast multichannel images: discrimination of tissue components in microscopic images of unstained specimens.


ABSTRACT: Low-contrast images, such as color microscopic images of unstained histological specimens, are composed of objects with highly correlated spectral profiles. Such images are very hard to segment. Here, we present a method that nonlinearly maps low-contrast color image into an image with an increased number of non-physical channels and a decreased correlation between spectral profiles. The method is a proof-of-concept validated on the unsupervised segmentation of color images of unstained specimens, in which case the tissue components appear colorless when viewed under the light microscope. Specimens of human hepatocellular carcinoma, human liver with metastasis from colon and gastric cancer and mouse fatty liver were used for validation. The average correlation between the spectral profiles of the tissue components was greater than 0.9985, and the worst case correlation was greater than 0.9997. The proposed method can potentially be applied to the segmentation of low-contrast multichannel images with high spatial resolution that arise in other imaging modalities.

SUBMITTER: Kopriva I 

PROVIDER: S-EPMC4477329 | biostudies-literature | 2015 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Unsupervised segmentation of low-contrast multichannel images: discrimination of tissue components in microscopic images of unstained specimens.

Kopriva Ivica I   Popović Hadžija Marijana M   Hadžija Mirko M   Aralica Gorana G  

Scientific reports 20150623


Low-contrast images, such as color microscopic images of unstained histological specimens, are composed of objects with highly correlated spectral profiles. Such images are very hard to segment. Here, we present a method that nonlinearly maps low-contrast color image into an image with an increased number of non-physical channels and a decreased correlation between spectral profiles. The method is a proof-of-concept validated on the unsupervised segmentation of color images of unstained specimen  ...[more]

Similar Datasets

| S-EPMC5708642 | biostudies-literature
| S-EPMC3254597 | biostudies-literature
| S-EPMC6292606 | biostudies-literature
| S-EPMC7035759 | biostudies-literature
| S-EPMC6612871 | biostudies-other
| S-EPMC6026534 | biostudies-literature
| S-EPMC6710455 | biostudies-literature
| S-EPMC3777770 | biostudies-literature
| S-EPMC3482907 | biostudies-other
| S-EPMC8363479 | biostudies-literature