Unknown

Dataset Information

0

Large and Tunable Polar-Toroidal Coupling in Ferroelectric Composite Nanowires toward Superior Electromechanical Responses.


ABSTRACT: The collective dipole behaviors in (BaTiO3)m/(SrTiO3)n composite nanowires are investigated based on the first-principles-derived simulations. It demonstrates that such nanowire systems exhibit intriguing dipole orders, due to the combining effect of the anisotropic electrostatic interaction of the nanowire, the SrTiO3-layer-modified electrostatic interaction and the multiphase ground state of BaTiO3 layer. Particularly, a strong polar-toroidal coupling that is tunable by the SrTiO3-layer thickness, temperature, external strains and electric fields is found to exist in the nanowires, with the appearance of fruitful dipole states (including those being purely polar, purely toroidal, both polar and toroidal, or distorted toroidal) and phase boundaries. As a consequence, an efficient cross control of the toroidal (polar) order by static (curled) electric field, and superior piezoelectric and piezotoroidal responses, can be achieved in the nanowires. The result provides new insights into the collective dipole behaviors in nanowire systems.

SUBMITTER: Chen WJ 

PROVIDER: S-EPMC4477413 | biostudies-literature | 2015 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Large and Tunable Polar-Toroidal Coupling in Ferroelectric Composite Nanowires toward Superior Electromechanical Responses.

Chen W J WJ   Zheng Yue Y   Wang Biao B  

Scientific reports 20150623


The collective dipole behaviors in (BaTiO3)m/(SrTiO3)n composite nanowires are investigated based on the first-principles-derived simulations. It demonstrates that such nanowire systems exhibit intriguing dipole orders, due to the combining effect of the anisotropic electrostatic interaction of the nanowire, the SrTiO3-layer-modified electrostatic interaction and the multiphase ground state of BaTiO3 layer. Particularly, a strong polar-toroidal coupling that is tunable by the SrTiO3-layer thickn  ...[more]

Similar Datasets

| S-EPMC9420800 | biostudies-literature
| S-EPMC5026422 | biostudies-literature
| S-EPMC7078226 | biostudies-literature
| S-EPMC7977148 | biostudies-literature
| S-EPMC9475528 | biostudies-literature
| S-EPMC5095447 | biostudies-literature
| S-EPMC3121826 | biostudies-literature
| S-EPMC8429646 | biostudies-literature
| S-EPMC6523164 | biostudies-literature
| S-EPMC6003500 | biostudies-literature