Unknown

Dataset Information

0

Adrenomedullin blockade induces regression of tumor neovessels through interference with vascular endothelial-cadherin signalling.


ABSTRACT: The cellular and molecular mechanisms by which adrenomedullin (AM) blockade suppresses tumor neovessels are not well defined. Herein, we show that AM blockade using anti-AM and anti-AM receptors antibodies targets vascular endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), and induces regression of unstable nascent tumor neovessels. The underlying mechanism involved, and shown in vitro and in vivo in mice, is the disruption of the molecular engagement of the endothelial cell-specific junctional molecules vascular endothelial-cadherin (VE-cadherin)/?-catenin complex. AM blockade increases endothelial cell permeability by inhibiting cell-cell contacts predominantly through disruption of VE-cadherin/?-catenin/Akt signalling pathway, thereby leading to vascular collapse and regression of tumor neovessels. At a molecular level, we show that AM blockade induces tyrosine phosphorylation of VE-cadherin at a critical tyrosine, Tyr731, which is sufficient to prevent the binding of ?-catenin to the cytoplasmic tail of VE-cadherin leading to the inhibition of cell barrier function. Furthermore, we demonstrate activation of Src kinase by phosphorylation on Tyr416, supporting a role of Src to phosphorylate Tyr731-VE-cadherin. In this model, Src inhibition impairs ?AM and ?AMR-induced Tyr731-VE-cadherin phosphorylation in a dose-dependent manner, indicating that Tyr731-VE-cadherin phosphorylation state is dependent on Src activation. We found that AM blockade induces ?-catenin phosphorylation on Ser33/Ser37/Thr41 sites in both ECs and VSMCs both in vitro and in vivo in mice. These data suggest that AM blockade selectively induces regression of unstable tumor neovessels, through disruption of VE-cadherin signalling. Targeting AM system may present a novel therapeutic target to selectively disrupt assembly and induce regression of nascent tumor neovessels, without affecting normal stabilized vasculature.

SUBMITTER: Khalfaoui-Bendriss G 

PROVIDER: S-EPMC4480698 | biostudies-literature | 2015 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Adrenomedullin blockade induces regression of tumor neovessels through interference with vascular endothelial-cadherin signalling.

Khalfaoui-Bendriss Ghizlane G   Dussault Nadège N   Fernandez-Sauze Samantha S   Berenguer-Daizé Caroline C   Sigaud Romain R   Delfino Christine C   Cayol Mylène M   Metellus Philippe P   Chinot Olivier O   Mabrouk Kamel K   Martin Pierre-Marie PM   Ouafik L'Houcine L  

Oncotarget 20150401 10


The cellular and molecular mechanisms by which adrenomedullin (AM) blockade suppresses tumor neovessels are not well defined. Herein, we show that AM blockade using anti-AM and anti-AM receptors antibodies targets vascular endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), and induces regression of unstable nascent tumor neovessels. The underlying mechanism involved, and shown in vitro and in vivo in mice, is the disruption of the molecular engagement of the endothelial cell-speci  ...[more]

Similar Datasets

| S-EPMC1253622 | biostudies-literature
| S-EPMC6334526 | biostudies-literature
| S-EPMC3084036 | biostudies-literature
| S-EPMC3810954 | biostudies-literature
| S-EPMC6597232 | biostudies-literature
| S-EPMC4732894 | biostudies-literature
| S-EPMC3190052 | biostudies-literature
| S-EPMC4053141 | biostudies-other
| S-EPMC2323269 | biostudies-literature
| S-EPMC5329144 | biostudies-literature