Unknown

Dataset Information

0

The 26S Proteasome Degrades the Soluble but Not the Fibrillar Form of the Yeast Prion Ure2p In Vitro.


ABSTRACT: Yeast prions are self-perpetuating protein aggregates that cause heritable and transmissible phenotypic traits. Among these, [PSI+] and [URE3] stand out as the most studied yeast prions, and result from the self-assembly of the translation terminator Sup35p and the nitrogen catabolism regulator Ure2p, respectively, into insoluble fibrillar aggregates. Protein quality control systems are well known to govern the formation, propagation and transmission of these prions. However, little is known about the implication of the cellular proteolytic machineries in their turnover. We previously showed that the 26S proteasome degrades both the soluble and fibrillar forms of Sup35p and affects [PSI+] propagation. Here, we show that soluble native Ure2p is degraded by the proteasome in an ubiquitin-independent manner. Proteasomal degradation of Ure2p yields amyloidogenic N-terminal peptides and a C-terminal resistant fragment. In contrast to Sup35p, fibrillar Ure2p resists proteasomal degradation. Thus, structural variability within prions may dictate their ability to be degraded by the cellular proteolytic systems.

SUBMITTER: Wang K 

PROVIDER: S-EPMC4482727 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications

The 26S Proteasome Degrades the Soluble but Not the Fibrillar Form of the Yeast Prion Ure2p In Vitro.

Wang Kai K   Redeker Virginie V   Madiona Karine K   Melki Ronald R   Kabani Mehdi M  

PloS one 20150626 6


Yeast prions are self-perpetuating protein aggregates that cause heritable and transmissible phenotypic traits. Among these, [PSI+] and [URE3] stand out as the most studied yeast prions, and result from the self-assembly of the translation terminator Sup35p and the nitrogen catabolism regulator Ure2p, respectively, into insoluble fibrillar aggregates. Protein quality control systems are well known to govern the formation, propagation and transmission of these prions. However, little is known abo  ...[more]

Similar Datasets

| S-EPMC6770211 | biostudies-literature
| S-EPMC1201353 | biostudies-literature
| S-EPMC126058 | biostudies-literature
| S-EPMC2669035 | biostudies-literature
| S-EPMC3443124 | biostudies-literature
| S-EPMC29279 | biostudies-literature
| S-EPMC4790998 | biostudies-literature
| S-EPMC1783769 | biostudies-literature
| S-EPMC1220066 | biostudies-other
| S-EPMC8106498 | biostudies-literature