Unknown

Dataset Information

0

Single-molecule analysis of Mss116-mediated group II intron folding.


ABSTRACT: DEAD-box helicases are conserved enzymes involved in nearly all aspects of RNA metabolism, but their mechanisms of action remain unclear. Here, we investigated the mechanism of the DEAD-box protein Mss116 on its natural substrate, the group II intron ai5?. Group II introns are structurally complex catalytic RNAs considered evolutionarily related to the eukaryotic spliceosome, and an interesting paradigm for large RNA folding. We used single-molecule fluorescence to monitor the effect of Mss116 on folding dynamics of a minimal active construct, ai5?-D135. The data show that Mss116 stimulates dynamic sampling between states along the folding pathway, an effect previously observed only with high Mg(2+) concentrations. Furthermore, the data indicate that Mss116 promotes folding through discrete ATP-independent and ATP-dependent steps. We propose that Mss116 stimulates group II intron folding through a multi-step process that involves electrostatic stabilization of early intermediates and ATP hydrolysis during the final stages of native state assembly.

SUBMITTER: Karunatilaka KS 

PROVIDER: S-EPMC4484588 | biostudies-literature | 2010 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Single-molecule analysis of Mss116-mediated group II intron folding.

Karunatilaka Krishanthi S KS   Solem Amanda A   Pyle Anna Marie AM   Rueda David D  

Nature 20101013 7318


DEAD-box helicases are conserved enzymes involved in nearly all aspects of RNA metabolism, but their mechanisms of action remain unclear. Here, we investigated the mechanism of the DEAD-box protein Mss116 on its natural substrate, the group II intron ai5γ. Group II introns are structurally complex catalytic RNAs considered evolutionarily related to the eukaryotic spliceosome, and an interesting paradigm for large RNA folding. We used single-molecule fluorescence to monitor the effect of Mss116 o  ...[more]

Similar Datasets

| S-EPMC2544543 | biostudies-literature
| S-EPMC2965245 | biostudies-literature
| S-EPMC2912160 | biostudies-literature
| S-EPMC6255197 | biostudies-literature
| S-EPMC2735237 | biostudies-literature
| S-EPMC1297705 | biostudies-literature
| S-EPMC4524724 | biostudies-literature
| S-EPMC7662913 | biostudies-literature
| S-EPMC4371910 | biostudies-literature
| S-EPMC2690983 | biostudies-literature