Unknown

Dataset Information

0

Overexpression of Rat Neurons Nitric Oxide Synthase in Rice Enhances Drought and Salt Tolerance.


ABSTRACT: Nitric oxide (NO) has been shown to play an important role in the plant response to biotic and abiotic stresses in Arabidopsis mutants with lower or higher levels of endogenous NO. The exogenous application of NO donors or scavengers has also suggested an important role for NO in plant defense against environmental stress. In this study, rice plants under drought and high salinity conditions showed increased nitric oxide synthase (NOS) activity and NO levels. Overexpression of rat neuronal NO synthase (nNOS) in rice increased both NOS activity and NO accumulation, resulting in improved tolerance of the transgenic plants to both drought and salt stresses. nNOS-overexpressing plants exhibited stronger water-holding capability, higher proline accumulation, less lipid peroxidation and reduced electrolyte leakage under drought and salt conditions than wild rice. Moreover, nNOS-overexpressing plants accumulated less H2O2, due to the observed up-regulation of OsCATA, OsCATB and OsPOX1. In agreement, the activities of CAT and POX were higher in transgenic rice than wild type. Additionally, the expression of six tested stress-responsive genes including OsDREB2A, OsDREB2B, OsSNAC1, OsSNAC2, OsLEA3 and OsRD29A, in nNOS-overexpressing plants was higher than that in the wild type under drought and high salinity conditions. Taken together, our results suggest that nNOS overexpression suppresses the stress-enhanced electrolyte leakage, lipid peroxidation and H2O2 accumulation, and promotes proline accumulation and the expression of stress-responsive genes under stress conditions, thereby promoting increased tolerance to drought and salt stresses.

SUBMITTER: Cai W 

PROVIDER: S-EPMC4485468 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications

Overexpression of Rat Neurons Nitric Oxide Synthase in Rice Enhances Drought and Salt Tolerance.

Cai Wei W   Liu Wen W   Wang Wen-Shu WS   Fu Zheng-Wei ZW   Han Tong-Tong TT   Lu Ying-Tang YT  

PloS one 20150629 6


Nitric oxide (NO) has been shown to play an important role in the plant response to biotic and abiotic stresses in Arabidopsis mutants with lower or higher levels of endogenous NO. The exogenous application of NO donors or scavengers has also suggested an important role for NO in plant defense against environmental stress. In this study, rice plants under drought and high salinity conditions showed increased nitric oxide synthase (NOS) activity and NO levels. Overexpression of rat neuronal NO sy  ...[more]

Similar Datasets

| S-EPMC5297637 | biostudies-literature
| S-EPMC9120446 | biostudies-literature
| S-EPMC6084956 | biostudies-literature
| S-EPMC2758698 | biostudies-literature
| S-EPMC4722120 | biostudies-literature
| S-EPMC4802158 | biostudies-literature
| S-EPMC7182595 | biostudies-literature
| S-EPMC10964647 | biostudies-literature
2021-01-18 | GSE164521 | GEO
| S-EPMC9181287 | biostudies-literature