Bioinformatics analysis of the target gene of fibroblast growth factor receptor 3 in bladder cancer and associated molecular mechanisms.
Ontology highlight
ABSTRACT: The aim of the present study was to elucidate the molecular mechanisms of fibroblast growth factor receptor 3 (FGFR3) activation via overexpression or mutation of the FGFR3 target gene in bladder cancer (BC). The transcription profile data GSE41035, which included 18 BC samples, containing 3 independent FGFR3 short hairpin (sh)RNA, and 6 control samples, containing enhanced green fluorescent protein (EGFP) shRNA, were obtained from the National Center of Biotechnology Information Gene Expression Omnibus database. The Limma package with multiple testing correction was used to identify differentially expressed genes (DEGs) between FGFR3 knockdown and control samples. Gene ontology (GO) and pathway enrichment analysis were conducted in order to investigate the DEGs at the functional level. In addition, differential co-expression analysis was employed to construct a gene co-expression network. A total of 196 DEGs were acquired, of which 101 were downregulated and 95 were upregulated. In addition, a gene signature was identified linking FGFR3 signaling with de novo sterol biosynthesis and metabolism using GO and pathway enrichment analysis. Furthermore, the present study demonstrated that the genes NME2, CCNB1 and H2AFZ were significantly associated with BC, as determined by the protein-protein interaction network of DEGs and co-expressed genes. In conclusion, the present study revealed the involvement of FGFR3 in the regulation of sterol biosynthesis and metabolism in the maintenance of BC; in addition, the present study provided a novel insight into the molecular mechanisms of FGFR3 in BC. These results may therefore contribute to the theoretical guidance into the detection and therapy of BC.
SUBMITTER: Ai X
PROVIDER: S-EPMC4487184 | biostudies-literature | 2015 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA