Unknown

Dataset Information

0

Crystallization of DNA-coated colloids.


ABSTRACT: DNA-coated colloids hold great promise for self-assembly of programmed heterogeneous microstructures, provided they not only bind when cooled below their melting temperature, but also rearrange so that aggregated particles can anneal into the structure that minimizes the free energy. Unfortunately, DNA-coated colloids generally collide and stick forming kinetically arrested random aggregates when the thickness of the DNA coating is much smaller than the particles. Here we report DNA-coated colloids that can rearrange and anneal, thus enabling the growth of large colloidal crystals from a wide range of micrometre-sized DNA-coated colloids for the first time. The kinetics of aggregation, crystallization and defect formation are followed in real time. The crystallization rate exhibits the familiar maximum for intermediate temperature quenches observed in metallic alloys, but over a temperature range smaller by two orders of magnitude, owing to the highly temperature-sensitive diffusion between aggregated DNA-coated colloids.

SUBMITTER: Wang Y 

PROVIDER: S-EPMC4490366 | biostudies-literature | 2015 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Crystallization of DNA-coated colloids.

Wang Yu Y   Wang Yufeng Y   Zheng Xiaolong X   Ducrot Étienne É   Yodh Jeremy S JS   Weck Marcus M   Pine David J DJ  

Nature communications 20150616


DNA-coated colloids hold great promise for self-assembly of programmed heterogeneous microstructures, provided they not only bind when cooled below their melting temperature, but also rearrange so that aggregated particles can anneal into the structure that minimizes the free energy. Unfortunately, DNA-coated colloids generally collide and stick forming kinetically arrested random aggregates when the thickness of the DNA coating is much smaller than the particles. Here we report DNA-coated collo  ...[more]

Similar Datasets

| S-EPMC10500262 | biostudies-literature
| S-EPMC7314559 | biostudies-literature
| S-EPMC9051097 | biostudies-literature
| S-EPMC6517385 | biostudies-literature
| S-EPMC10903402 | biostudies-literature
| S-EPMC8740761 | biostudies-literature
| S-EPMC6347717 | biostudies-literature
| S-EPMC7408365 | biostudies-literature
| S-EPMC6082344 | biostudies-literature
| S-EPMC9618141 | biostudies-literature