Unknown

Dataset Information

0

Graphene-enabled electron microscopy and correlated super-resolution microscopy of wet cells.


ABSTRACT: The application of electron microscopy to hydrated biological samples has been limited by high-vacuum operating conditions. Traditional methods utilize harsh and laborious sample dehydration procedures, often leading to structural artefacts and creating difficulties for correlating results with high-resolution fluorescence microscopy. Here, we utilize graphene, a single-atom-thick carbon meshwork, as the thinnest possible impermeable and conductive membrane to protect animal cells from vacuum, thus enabling high-resolution electron microscopy of wet and untreated whole cells with exceptional ease. Our approach further allows for facile correlative super-resolution and electron microscopy of wet cells directly on the culturing substrate. In particular, individual cytoskeletal actin filaments are resolved in hydrated samples through electron microscopy and well correlated with super-resolution results.

SUBMITTER: Wojcik M 

PROVIDER: S-EPMC4490578 | biostudies-literature | 2015 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Graphene-enabled electron microscopy and correlated super-resolution microscopy of wet cells.

Wojcik Michal M   Hauser Margaret M   Li Wan W   Moon Seonah S   Xu Ke K  

Nature communications 20150611


The application of electron microscopy to hydrated biological samples has been limited by high-vacuum operating conditions. Traditional methods utilize harsh and laborious sample dehydration procedures, often leading to structural artefacts and creating difficulties for correlating results with high-resolution fluorescence microscopy. Here, we utilize graphene, a single-atom-thick carbon meshwork, as the thinnest possible impermeable and conductive membrane to protect animal cells from vacuum, t  ...[more]

Similar Datasets

| S-EPMC7448575 | biostudies-literature
2023-06-21 | GSE202638 | GEO
| S-EPMC10203124 | biostudies-literature
2023-06-21 | GSE202623 | GEO
2023-06-21 | GSE202636 | GEO
| PRJNA836860 | ENA
| S-EPMC5524168 | biostudies-literature
| S-EPMC3943662 | biostudies-literature
| S-EPMC6362030 | biostudies-literature
| S-EPMC8227466 | biostudies-literature