Unknown

Dataset Information

0

Dynamic tensile forces drive collective cell migration through three-dimensional extracellular matrices.


ABSTRACT: Collective cell migration drives tissue remodeling during development, wound repair, and metastatic invasion. The physical mechanisms by which cells move cohesively through dense three-dimensional (3D) extracellular matrix (ECM) remain incompletely understood. Here, we show directly that migration of multicellular cohorts through collagenous matrices occurs via a dynamic pulling mechanism, the nature of which had only been inferred previously in 3D. Tensile forces increase at the invasive front of cohorts, serving a physical, propelling role as well as a regulatory one by conditioning the cells and matrix for further extension. These forces elicit mechanosensitive signaling within the leading edge and align the ECM, creating microtracks conducive to further migration. Moreover, cell movements are highly correlated and in phase with ECM deformations. Migrating cohorts use spatially localized, long-range forces and consequent matrix alignment to navigate through the ECM. These results suggest biophysical forces are critical for 3D collective migration.

SUBMITTER: Gjorevski N 

PROVIDER: S-EPMC4499882 | biostudies-literature | 2015 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Dynamic tensile forces drive collective cell migration through three-dimensional extracellular matrices.

Gjorevski Nikolce N   Piotrowski Alexandra S AS   Varner Victor D VD   Nelson Celeste M CM  

Scientific reports 20150713


Collective cell migration drives tissue remodeling during development, wound repair, and metastatic invasion. The physical mechanisms by which cells move cohesively through dense three-dimensional (3D) extracellular matrix (ECM) remain incompletely understood. Here, we show directly that migration of multicellular cohorts through collagenous matrices occurs via a dynamic pulling mechanism, the nature of which had only been inferred previously in 3D. Tensile forces increase at the invasive front  ...[more]

Similar Datasets

| S-EPMC7192581 | biostudies-literature
| S-EPMC6472805 | biostudies-literature
| S-EPMC3043991 | biostudies-literature
| S-EPMC7490296 | biostudies-literature
| S-EPMC3845971 | biostudies-literature
| S-EPMC7897907 | biostudies-literature
| S-EPMC4907723 | biostudies-literature
| S-EPMC4395426 | biostudies-literature
| S-EPMC4839456 | biostudies-literature
| S-EPMC4321243 | biostudies-other