Unknown

Dataset Information

0

Amphetamine Exerts Dose-Dependent Changes in Prefrontal Cortex Attractor Dynamics during Working Memory.


ABSTRACT: Modulation of neural activity by monoamine neurotransmitters is thought to play an essential role in shaping computational neurodynamics in the neocortex, especially in prefrontal regions. Computational theories propose that monoamines may exert bidirectional (concentration-dependent) effects on cognition by altering prefrontal cortical attractor dynamics according to an inverted U-shaped function. To date, this hypothesis has not been addressed directly, in part because of the absence of appropriate statistical methods required to assess attractor-like behavior in vivo. The present study used a combination of advanced multivariate statistical, time series analysis, and machine learning methods to assess dynamic changes in network activity from multiple single-unit recordings from the medial prefrontal cortex (mPFC) of rats while the animals performed a foraging task guided by working memory after pretreatment with different doses of d-amphetamine (AMPH), which increases monoamine efflux in the mPFC. A dose-dependent, bidirectional effect of AMPH on neural dynamics in the mPFC was observed. Specifically, a 1.0 mg/kg dose of AMPH accentuated separation between task-epoch-specific population states and convergence toward these states. In contrast, a 3.3 mg/kg dose diminished separation and convergence toward task-epoch-specific population states, which was paralleled by deficits in cognitive performance. These results support the computationally derived hypothesis that moderate increases in monoamine efflux would enhance attractor stability, whereas high frontal monoamine levels would severely diminish it. Furthermore, they are consistent with the proposed inverted U-shaped and concentration-dependent modulation of cortical efficiency by monoamines.

SUBMITTER: Lapish CC 

PROVIDER: S-EPMC4502258 | biostudies-literature | 2015 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Amphetamine Exerts Dose-Dependent Changes in Prefrontal Cortex Attractor Dynamics during Working Memory.

Lapish Christopher C CC   Balaguer-Ballester Emili E   Seamans Jeremy K JK   Phillips Anthony G AG   Durstewitz Daniel D  

The Journal of neuroscience : the official journal of the Society for Neuroscience 20150701 28


Modulation of neural activity by monoamine neurotransmitters is thought to play an essential role in shaping computational neurodynamics in the neocortex, especially in prefrontal regions. Computational theories propose that monoamines may exert bidirectional (concentration-dependent) effects on cognition by altering prefrontal cortical attractor dynamics according to an inverted U-shaped function. To date, this hypothesis has not been addressed directly, in part because of the absence of approp  ...[more]

Similar Datasets

| S-EPMC4568266 | biostudies-literature
| S-EPMC6764601 | biostudies-literature
| S-EPMC2964236 | biostudies-literature
| S-EPMC5563698 | biostudies-other
| S-EPMC5511881 | biostudies-other
| S-EPMC7083295 | biostudies-literature
| S-EPMC2729022 | biostudies-literature
| S-EPMC8634091 | biostudies-literature
| S-EPMC6581739 | biostudies-literature