Ontology highlight
ABSTRACT:
SUBMITTER: Zhang W
PROVIDER: S-EPMC4506430 | biostudies-literature | 2015 Jun
REPOSITORIES: biostudies-literature
Zhang Wenqian W Yu Ying Y Hertwig Falk F Thierry-Mieg Jean J Zhang Wenwei W Thierry-Mieg Danielle D Wang Jian J Furlanello Cesare C Devanarayan Viswanath V Cheng Jie J Deng Youping Y Hero Barbara B Hong Huixiao H Jia Meiwen M Li Li L Lin Simon M SM Nikolsky Yuri Y Oberthuer André A Qing Tao T Su Zhenqiang Z Volland Ruth R Wang Charles C Wang May D MD Ai Junmei J Albanese Davide D Asgharzadeh Shahab S Avigad Smadar S Bao Wenjun W Bessarabova Marina M Brilliant Murray H MH Brors Benedikt B Chierici Marco M Chu Tzu-Ming TM Zhang Jibin J Grundy Richard G RG He Min Max MM Hebbring Scott S Kaufman Howard L HL Lababidi Samir S Lancashire Lee J LJ Li Yan Y Lu Xin X XX Luo Heng H Ma Xiwen X Ning Baitang B Noguera Rosa R Peifer Martin M Phan John H JH Roels Frederik F Rosswog Carolina C Shao Susan S Shen Jie J Theissen Jessica J Tonini Gian Paolo GP Vandesompele Jo J Wu Po-Yen PY Xiao Wenzhong W Xu Joshua J Xu Weihong W Xuan Jiekun J Yang Yong Y Ye Zhan Z Dong Zirui Z Zhang Ke K KK Yin Ye Y Zhao Chen C Zheng Yuanting Y Wolfinger Russell D RD Shi Tieliu T Malkas Linda H LH Berthold Frank F Wang Jun J Tong Weida W Shi Leming L Peng Zhiyu Z Fischer Matthias M
Genome biology 20150625
<h4>Background</h4>Gene expression profiling is being widely applied in cancer research to identify biomarkers for clinical endpoint prediction. Since RNA-seq provides a powerful tool for transcriptome-based applications beyond the limitations of microarrays, we sought to systematically evaluate the performance of RNA-seq-based and microarray-based classifiers in this MAQC-III/SEQC study for clinical endpoint prediction using neuroblastoma as a model.<h4>Results</h4>We generate gene expression p ...[more]