Project description:Next-generation sequencing is not yet commonly used in clinical laboratories because of a lack of simple and intuitive tools. We developed a software tool (TreeSeq) with a quaternary tree search structure for the analysis of sequence data. This permits rapid searches for sequences of interest in large datasets. We used TreeSeq to screen a gut microbiota metagenomic dataset and a whole genome sequencing (WGS) dataset of a strain of Klebsiella pneumoniae for antibiotic resistance genes and compared the results with BLAST and phenotypic resistance determination. TreeSeq was more than thirty times faster than BLAST and accurately detected resistance gene sequences in complex metagenomic data and resistance genes corresponding with the phenotypic resistance pattern of the Klebsiella strain. Resistance genes found by TreeSeq were visualized as a gene coverage heat map, aiding in the interpretation of results. TreeSeq brings analysis of metagenomic and WGS data within reach of clinical diagnostics.
Project description:With the decrease in cost and increase in output of whole-genome shotgun technologies, many metagenomic studies are utilizing this approach in lieu of the more traditional 16S rRNA amplicon technique. Due to the large number of relatively short reads output from whole-genome shotgun technologies, there is a need for fast and accurate short-read OTU classifiers. While there are relatively fast and accurate algorithms available, such as MetaPhlAn, MetaPhyler, PhyloPythiaS, and PhymmBL, these algorithms still classify samples in a read-by-read fashion and so execution times can range from hours to days on large datasets. We introduce WGSQuikr, a reconstruction method which can compute a vector of taxonomic assignments and their proportions in the sample with remarkable speed and accuracy. We demonstrate on simulated data that WGSQuikr is typically more accurate and up to an order of magnitude faster than the aforementioned classification algorithms. We also verify the utility of WGSQuikr on real biological data in the form of a mock community. WGSQuikr is a Whole-Genome Shotgun QUadratic, Iterative, K-mer based Reconstruction method which extends the previously introduced 16S rRNA-based algorithm Quikr. A MATLAB implementation of WGSQuikr is available at: http://sourceforge.net/projects/wgsquikr.
Project description:Live cell imaging has been widely used to generate data for quantitative understanding of cellular dynamics. Various applications have been developed to perform automated imaging data analysis, which often requires tedious manual correction. It remains a challenge to develop an efficient curation method that can analyze massive imaging datasets with high accuracy. Here, we present eDetect, a fast error detection and correction tool that provides a powerful and convenient solution for the curation of live cell imaging analysis results. In eDetect, we propose a gating strategy to distinguish correct and incorrect image analysis results by visualizing image features based on principal component analysis. We demonstrate that this approach can substantially accelerate the data correction process and improve the accuracy of imaging data analysis. eDetect is well documented and designed to be user friendly for non-expert users. It is freely available at https://sites.google.com/view/edetect/ and https://github.com/Zi-Lab/eDetect.
Project description:Current publicly available tools that allow rapid exploration of linkage disequilibrium (LD) between markers (e.g., HaploReg and LDlink) are based on whole-genome sequence (WGS) data from 2,504 individuals in the 1000 Genomes Project. Here, we present TOP-LD, an online tool to explore LD inferred with high-coverage (∼30×) WGS data from 15,578 individuals in the NHLBI Trans-Omics for Precision Medicine (TOPMed) program. TOP-LD provides a significant upgrade compared to current LD tools, as the TOPMed WGS data provide a more comprehensive representation of genetic variation than the 1000 Genomes data, particularly for rare variants and in the specific populations that we analyzed. For example, TOP-LD encompasses LD information for 150.3, 62.2, and 36.7 million variants for European, African, and East Asian ancestral samples, respectively, offering 2.6- to 9.1-fold increase in variant coverage compared to HaploReg 4.0 or LDlink. In addition, TOP-LD includes tens of thousands of structural variants (SVs). We demonstrate the value of TOP-LD in fine-mapping at the GGT1 locus associated with gamma glutamyltransferase in the African ancestry participants in UK Biobank. Beyond fine-mapping, TOP-LD can facilitate a wide range of applications that are based on summary statistics and estimates of LD. TOP-LD is freely available online.
Project description:The analysis of whole-genome sequencing studies is challenging due to the large number of noncoding rare variants, our limited understanding of their functional effects, and the lack of natural units for testing. Here we propose a scan statistic framework, WGScan, to simultaneously detect the existence, and estimate the locations of association signals at genome-wide scale. WGScan can analytically estimate the significance threshold for a whole-genome scan; utilize summary statistics for a meta-analysis; incorporate functional annotations for enhanced discoveries in noncoding regions; and enable enrichment analyses using genome-wide summary statistics. Based on the analysis of whole genomes of 1,786 phenotypically discordant sibling pairs from the Simons Simplex Collection study for autism spectrum disorders, we derive genome-wide significance thresholds for whole genome sequencing studies and detect significant enrichments of regions showing associations with autism in promoter regions, functional categories related to autism, and enhancers predicted to regulate expression of autism associated genes.
Project description:Massively parallel sequencing technologies provide great opportunities for discovering rare susceptibility variants involved in complex disease etiology via large-scale imputation and exome and whole-genome sequence-based association studies. Due to modest effect sizes, large sample sizes of tens to hundreds of thousands of individuals are required for adequately powered studies. Current analytical tools are obsolete when it comes to handling these large datasets. To facilitate the analysis of large-scale sequence-based studies, we developed SEQSpark which implements parallel processing based on Spark to increase the speed and efficiency of performing data quality control, annotation, and association analysis. To demonstrate the versatility and speed of SEQSpark, we analyzed whole-genome sequence data from the UK10K, testing for associations with waist-to-hip ratios. The analysis, which was completed in 1.5 hr, included loading data, annotation, principal component analysis, and single variant and rare variant aggregate association analysis of >9 million variants. For rare variant aggregate analysis, an exome-wide significant association (p < 2.5 × 10-6) was observed with CCDC62 (SKAT-O [p = 6.89 × 10-7], combined multivariate collapsing [p = 1.48 × 10-6], and burden of rare variants [p = 1.48 × 10-6]). SEQSpark was also used to analyze 50,000 simulated exomes and it required 1.75 hr for the analysis of a quantitative trait using several rare variant aggregate association methods. Additionally, the performance of SEQSpark was compared to Variant Association Tools and PLINK/SEQ. SEQSpark was always faster and in some situations computation was reduced to a hundredth of the time. SEQSpark will empower large sequence-based epidemiological studies to quickly elucidate genetic variation involved in the etiology of complex traits.
Project description:BackgroundCardiomyopathy is highly heritable but genetically diverse. At present, genetic testing for cardiomyopathy uses targeted sequencing to simultaneously assess the coding regions of >50 genes. New genes are routinely added to panels to improve the diagnostic yield. With the anticipated $1000 genome, it is expected that genetic testing will shift toward comprehensive genome sequencing accompanied by targeted gene analysis. Therefore, we assessed the reliability of whole genome sequencing and targeted analysis to identify cardiomyopathy variants in 11 subjects with cardiomyopathy.Methods and resultsWhole genome sequencing with an average of 37× coverage was combined with targeted analysis focused on 204 genes linked to cardiomyopathy. Genetic variants were scored using multiple prediction algorithms combined with frequency data from public databases. This pipeline yielded 1 to 14 potentially pathogenic variants per individual. Variants were further analyzed using clinical criteria and segregation analysis, where available. Three of 3 previously identified primary mutations were detected by this analysis. In 6 subjects for whom the primary mutation was previously unknown, we identified mutations that segregated with disease, had clinical correlates, and had additional pathological correlation to provide evidence for causality. For 2 subjects with previously known primary mutations, we identified additional variants that may act as modifiers of disease severity. In total, we identified the likely pathological mutation in 9 of 11 (82%) subjects.ConclusionsThese pilot data demonstrate that ≈30 to 40× coverage whole genome sequencing combined with targeted analysis is feasible and sensitive to identify rare variants in cardiomyopathy-associated genes.
Project description:BackgroundHigh throughput sequencing technologies have been increasingly used in basic genetic research as well as in clinical applications. More and more variants underlying Mendelian and complex diseases are being discovered and documented using these technologies. However, identifying and obtaining a short list of candidate disease-causing variants remains challenging for most of the users after variant calling, especially for people without computational skills.ResultsWe developed GenESysV (Genome Exploration System for Variants) as a scalable, intuitive and user-friendly open source tool. It can be used in any high throughput sequencing or genotyping project for storing, managing, prioritizing and efficient retrieval of variants of interest. GenESysV is designed for use by researchers from a wide range of disciplines and computational skills, including wet-lab scientists, clinicians, and bioinformaticians.ConclusionsGenESysV is the first tool to be able to handle genomic variant dataset ranging in size from a few to thousands of samples and still maintain fast data importation and good query performance. It has a very intuitive graphical user interface and can also be used in studies where secured data access is an important concern. We believe this tool will benefit the human disease research community to speed up discoveries for genetic variants underlying human genetic disorders.