Unknown

Dataset Information

0

A P-Norm Robust Feature Extraction Method for Identifying Differentially Expressed Genes.


ABSTRACT: In current molecular biology, it becomes more and more important to identify differentially expressed genes closely correlated with a key biological process from gene expression data. In this paper, based on the Schatten p-norm and Lp-norm, a novel p-norm robust feature extraction method is proposed to identify the differentially expressed genes. In our method, the Schatten p-norm is used as the regularization function to obtain a low-rank matrix and the Lp-norm is taken as the error function to improve the robustness to outliers in the gene expression data. The results on simulation data show that our method can obtain higher identification accuracies than the competitive methods. Numerous experiments on real gene expression data sets demonstrate that our method can identify more differentially expressed genes than the others. Moreover, we confirmed that the identified genes are closely correlated with the corresponding gene expression data.

SUBMITTER: Liu J 

PROVIDER: S-EPMC4511795 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications

A P-Norm Robust Feature Extraction Method for Identifying Differentially Expressed Genes.

Liu Jian J   Liu Jin-Xing JX   Gao Ying-Lian YL   Kong Xiang-Zhen XZ   Wang Xue-Song XS   Wang Dong D  

PloS one 20150722 7


In current molecular biology, it becomes more and more important to identify differentially expressed genes closely correlated with a key biological process from gene expression data. In this paper, based on the Schatten p-norm and Lp-norm, a novel p-norm robust feature extraction method is proposed to identify the differentially expressed genes. In our method, the Schatten p-norm is used as the regularization function to obtain a low-rank matrix and the Lp-norm is taken as the error function to  ...[more]

Similar Datasets

| S-EPMC3654929 | biostudies-literature
| S-EPMC2584353 | biostudies-literature
| S-EPMC5561268 | biostudies-literature
| S-EPMC4743632 | biostudies-literature
| S-EPMC9580456 | biostudies-literature
| S-EPMC8229713 | biostudies-literature
| S-EPMC5392409 | biostudies-literature
| S-EPMC5855014 | biostudies-literature
| S-EPMC1885857 | biostudies-literature
| S-EPMC3539384 | biostudies-literature