Allometric equations for estimating belowground biomass of Androstachys johnsonii Prain.
Ontology highlight
ABSTRACT: BACKGROUND:The belowground component of the trees is still poorly known because it needs labour- and time-intensive in situ measurements. However, belowground biomass (BGB) constitutes a significant share of the total forest biomass. I analysed the BGB allocation patterns, fitted models for estimating root components and root system biomasses, and called attention for its possible use in predicting anchoring functions of the different root components. RESULTS:More than half and almost one third of BGB is allocated to the lateral roots and to the root collar, respectively. More than 80% of the BGB is found at a depth range of 9.6-61.2 cm. As the tree size increased, the proportion of BGB allocated to taproots decreased and that allocated to lateral roots increased. All independent models performed almost equally, with the predictors explaining, on average, 98% of the variation in the BGB. CONCLUSIONS:It was hypothesised that BGB allocation patterns are a response of the anchoring functions of the tap and lateral roots and therefore, root component biomass models can be used as a methodology to predict anchoring functions of the different root components. Based on the fact that all models performed almost equally, the models using either diameter at breast height (DBH) exclusively as a predictor should be preferred, as tree height is difficult to measure. Models using the root collar diameter (RCD) only should be preferred when the tree is found cut down, as sometimes the RCD is affected by root buttress. Given the large sample size, the validation results, and the coverage of a wide geographical, soil and climatic range, the models fitted can be applied in all A. johnsonii stands in Mozambique.
SUBMITTER: Magalhaes TM
PROVIDER: S-EPMC4513222 | biostudies-literature | 2015 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA