Unknown

Dataset Information

0

Biodegradable cationic polymeric nanocapsules for overcoming multidrug resistance and enabling drug-gene co-delivery to cancer cells.


ABSTRACT: Having unique architectural features, cationic polymeric nanocapsules (NCs) with well-defined covalently stabilized biodegradable structures were generated as potentially universal and safe therapeutic nanocarriers. These NCs were synthesized from allyl-functionalized cationic polylactide (CPLA) by highly efficient UV-induced thiol-ene interfacial cross-linking in transparent miniemulsions. With tunable nanoscopic sizes, negligible cytotoxicity and remarkable degradability, they are able to encapsulate doxorubicin (Dox) with inner cavities and bind interleukin-8 (IL-8) small interfering RNA (siRNA) with cationic shells. The Dox-encapsulated NCs can effectively bypass the P-glycoprotein (Pgp)-mediated multidrug resistance of MCF7/ADR cancer cells, thereby resulting in increased intracellular drug concentration and reduced cell viability. In vitro studies also showed that the NCs loaded with Dox, IL-8 siRNA and both agents can be readily taken up by PC3 prostate cancer cells, resulting in a significant chemotherapeutic effect and/or IL-8 gene silencing.

SUBMITTER: Chen CK 

PROVIDER: S-EPMC4522154 | biostudies-literature | 2014

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7887387 | biostudies-literature
| S-EPMC5368638 | biostudies-literature
| S-EPMC5542755 | biostudies-literature
| S-EPMC7425807 | biostudies-literature
| S-EPMC10142934 | biostudies-literature
| S-EPMC4265377 | biostudies-literature
| S-EPMC5360411 | biostudies-literature
| S-EPMC7541487 | biostudies-literature
| S-EPMC7773589 | biostudies-literature
| S-EPMC8210813 | biostudies-literature