Unknown

Dataset Information

0

Codon-optimized fluorescent mTFP and mCherry for microscopic visualization and genetic counterselection of streptococci and enterococci.


ABSTRACT: Despite the powerful potential of fluorescent proteins for labeling bacteria, their use has been limited in multi-species oral biofilm models. Fermentative metabolism by streptococcal species that initiate biofilm colonization results in an acidic, reduced microenvironment that may limit the activities of some fluorescent proteins which are influenced by pH and oxygen availability. The need to reliably distinguish morphologically similar strains within biofilms was the impetus for this work. Teal fluorescent protein (mTFP1) and red fluorescent protein (mCherry) were chosen because their fluorescent properties made them promising candidates. Since tRNA availability has been implicated in efficient translation of sufficient quantities of protein for maximum fluorescence, a streptococcal codon optimization approach was used. DNA was synthesized to encode either protein using codons most frequently used in streptococci; each coding region was preceded by an engineered ribosomal binding site and restriction sites for cloning a promoter. Plasmids carrying this synthesized DNA under control of the Streptococcus mutans lactate dehydrogenase promoter conferred fluorescence to nine representative streptococcal and two Enterococcus faecalis strains. Further characterization in Streptococcus gordonii showed that mTFP1 and mCherry expressions could be detected in cells grown planktonically, in biofilms, or in colonies on agar when expressed on an extrachromosomal plasmid or in single copy integrated into the chromosome. This latter property facilitated counterselection of chromosomal mutations demonstrating value for bacterial strain construction. Fluorescent and non-fluorescent bacteria were distinguishable at acidic pH. These codon-optimized versions of mTFP1 and mCherry have promising potential for use in multiple experimental applications.

SUBMITTER: Vickerman MM 

PROVIDER: S-EPMC4522221 | biostudies-literature | 2015 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Codon-optimized fluorescent mTFP and mCherry for microscopic visualization and genetic counterselection of streptococci and enterococci.

Vickerman M Margaret MM   Mansfield Jillian M JM   Zhu Min M   Walters Katherine S KS   Banas Jeffrey A JA  

Journal of microbiological methods 20150626


Despite the powerful potential of fluorescent proteins for labeling bacteria, their use has been limited in multi-species oral biofilm models. Fermentative metabolism by streptococcal species that initiate biofilm colonization results in an acidic, reduced microenvironment that may limit the activities of some fluorescent proteins which are influenced by pH and oxygen availability. The need to reliably distinguish morphologically similar strains within biofilms was the impetus for this work. Tea  ...[more]

Similar Datasets

| S-EPMC7387403 | biostudies-literature
| S-EPMC3126427 | biostudies-literature
| S-EPMC2663184 | biostudies-literature
| S-EPMC7145796 | biostudies-literature
| S-EPMC6121993 | biostudies-literature
| S-EPMC3248888 | biostudies-literature
| S-EPMC2643557 | biostudies-literature
| S-EPMC8480232 | biostudies-literature
| S-EPMC5722324 | biostudies-literature
| S-EPMC4500511 | biostudies-literature