Unknown

Dataset Information

0

A Combined Optogenetic-Knockdown Strategy Reveals a Major Role of Tomosyn in Mossy Fiber Synaptic Plasticity.


ABSTRACT: Neurotransmitter release probability (P(r)) largely determines the dynamic properties of synapses. While much is known about the role of presynaptic proteins in transmitter release, their specific contribution to synaptic plasticity is unclear. One such protein, tomosyn, is believed to reduce P(r) by interfering with the SNARE complex formation. Tomosyn is enriched at hippocampal mossy fiber-to-CA3 pyramidal cell synapses (MF-CA3), which characteristically exhibit low P(r), strong synaptic facilitation, and pre-synaptic protein kinase A (PKA)-dependent long-term potentiation (LTP). To evaluate tomosyn's role in MF-CA3 function, we used a combined knockdown (KD)-optogenetic strategy whereby presynaptic neurons with reduced tomosyn levels were selectively activated by light. Using this approach in mouse hippocampal slices, we found that facilitation, LTP, and PKA-induced potentiation were significantly impaired at tomosyn-deficient synapses. These findings not only indicate that tomosyn is a key regulator of MF-CA3 plasticity but also highlight the power of a combined KD-optogenetic approach to determine the role of presynaptic proteins.

SUBMITTER: Ben-Simon Y 

PROVIDER: S-EPMC4525481 | biostudies-literature | 2015 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

A Combined Optogenetic-Knockdown Strategy Reveals a Major Role of Tomosyn in Mossy Fiber Synaptic Plasticity.

Ben-Simon Yoav Y   Rodenas-Ruano Alma A   Alviña Karina K   Lam Alice D AD   Stuenkel Edward L EL   Castillo Pablo E PE   Ashery Uri U  

Cell reports 20150709 3


Neurotransmitter release probability (P(r)) largely determines the dynamic properties of synapses. While much is known about the role of presynaptic proteins in transmitter release, their specific contribution to synaptic plasticity is unclear. One such protein, tomosyn, is believed to reduce P(r) by interfering with the SNARE complex formation. Tomosyn is enriched at hippocampal mossy fiber-to-CA3 pyramidal cell synapses (MF-CA3), which characteristically exhibit low P(r), strong synaptic facil  ...[more]

Similar Datasets

| S-EPMC10814840 | biostudies-literature
2022-10-28 | GSE216509 | GEO
| S-EPMC2660276 | biostudies-literature
| S-EPMC3545206 | biostudies-literature
| S-EPMC8131630 | biostudies-literature
| S-EPMC6927957 | biostudies-literature
| S-EPMC2544594 | biostudies-literature
| S-EPMC3964078 | biostudies-literature
| S-EPMC9826949 | biostudies-literature
| S-EPMC8612732 | biostudies-literature