Unknown

Dataset Information

0

E?ux-mediated resistance to a benzothiadiazol derivative effective against Burkholderia cenocepacia.


ABSTRACT: Burkholderia cenocepacia is a major concern for people suffering from cystic fibrosis as it contributes to serious respiratory tract infections. The lack of drugs effective against this opportunistic pathogen, along with the high level of resistance to multiple antibiotics, render the treatment of these infections particularly difficult. Here a new compound, belonging to the 2,1,3-benzothiadiazol-5-yl family (10126109), with a bactericidal effect and a minimal inhibitory concentration (MIC) of 8 ?g/ml against B. cenocepacia, is described. The compound is not cytotoxic and effective against B. cenocepacia clinical isolates and members of all the known B. cepacia complex species. Spontaneous mutants resistant to 10126109 were isolated and mutations in the MerR transcriptional regulator BCAM1948 were identified. In this way, a mechanism of resistance to this new molecule was described, which relies on the overexpression of the RND-9 e?ux pump. Indeed, rnd-9 overexpression was confirmed by quantitative reverse transcription PCR, and RND-9 was identified in the membrane fractions of the mutant strains. Moreover, the increase in the MIC values of different drugs in the mutant strains, together with complementation experiments, suggested the involvement of RND-9 in the e?ux of 10126109, thus indicating again the central role of e?ux transporters in B. cenocepacia drug resistance.

SUBMITTER: Scoffone VC 

PROVIDER: S-EPMC4525489 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications

Efflux-mediated resistance to a benzothiadiazol derivative effective against Burkholderia cenocepacia.

Scoffone Viola C VC   Ryabova Olga O   Makarov Vadim V   Iadarola Paolo P   Fumagalli Marco M   Fondi Marco M   Fani Renato R   De Rossi Edda E   Riccardi Giovanna G   Buroni Silvia S  

Frontiers in microbiology 20150805


Burkholderia cenocepacia is a major concern for people suffering from cystic fibrosis as it contributes to serious respiratory tract infections. The lack of drugs effective against this opportunistic pathogen, along with the high level of resistance to multiple antibiotics, render the treatment of these infections particularly difficult. Here a new compound, belonging to the 2,1,3-benzothiadiazol-5-yl family (10126109), with a bactericidal effect and a minimal inhibitory concentration (MIC) of 8  ...[more]

Similar Datasets

| S-EPMC6963507 | biostudies-literature
| S-EPMC7154053 | biostudies-literature
| S-EPMC3765740 | biostudies-literature
| S-EPMC5937589 | biostudies-other
| S-EPMC4460083 | biostudies-literature
| S-EPMC4010498 | biostudies-literature
| S-EPMC4754759 | biostudies-other
| S-EPMC5127577 | biostudies-literature
| S-EPMC5749847 | biostudies-literature
| S-EPMC5572248 | biostudies-literature